
Real Python
Pocket Reference

Visit realpython.com to
turbocharge your
Python learning with
in‑depth Tutorials,
real‑world examples,
and expert guidance.

Getting Started

Follow these guides to kickstart your Python journey:
realpython.com/what-can-i-do-with-python
realpython.com/installing-python
realpython.com/python-first-steps

Start the Interactive Shell

$ python

Quit the Interactive Shell

>>> exit()

Run a Script

$ python my_script.py

Run a Script in Interactive Mode

$ python -i my_script.py

Learn More on realpython.com/search by Typing:
interpreter ∙ run a script ∙ command line

Comments

Always add a space after the #
Use comments to explain “why” of your code

Write Comments

This is a comment
print("This code will not run.")
print("This will run.") # Comments are ignored by Python

Learn More on realpython.com/search by Typing:
comment ∙ documentation

Data Types

Python is dynamically typed
Use None to represent missing or optional values
Use type() to check object type
Check for a specific type with isinstance()
issubclass() checks if a class is a subclass

Type Investigation
type(42) # <class 'int'>
type(3.14) # <class 'float'>
type("Hello") # <class 'str'>
type(True) # <class 'bool'>
type(None) # <class 'NoneType'>

isinstance(3.14, float) # True
issubclass(int, object) # True - everything inherits from object

Type Conversion

int("42") # 42
float("3.14") # 3.14
str(42) # "42"
bool(1) # True
list("abc") # ["a", "b", "c"]

Learn More on realpython.com/search by Typing:
data types ∙ type checking ∙ isinstance ∙ issubclass

Variables & Assignment

Variables are created when first assigned
Use descriptive variable names
Follow snake_case convention

Basic Assignment

name = "Leo" # String
age = 7 # Integer
height = 5.6 # Float
is_cat = True # Boolean
flaws = None # None type

Parallel & Chained Assignments
x, y = 10, 20 # Assign multiple values
a = b = c = 0 # Give same value to multiple variables

Augmented Assignments

counter += 1
numbers += [4, 5]
permissions |= write

Learn More on realpython.com/search by Typing:
variables ∙ assignment operator ∙ walrus operator

Strings

It’s recommended to use double-quotes for strings
Use "\n" to create a line break in a string
To write a backslash in a normal string, write "\\"

Creating Strings

single = 'Hello'
double = "World"
multi = """Multiple
line string"""

String Operations

greeting = "me" + "ow!" # "meow!"
repeat = "Meow!" * 3 # "Meow!Meow!Meow!"
length = len("Python") # 6

String Methods

"a".upper() # "A"
"A".lower() # "a"
" a ".strip() # "a"
"abc".replace("bc", "ha") # "aha"
"a b".split() # ["a", "b"]
"-".join(["a", "b"]) # "a-b"

String Indexing & Slicing

text = "Python"
text[0] # "P" (first)
text[-1] # "n" (last)
text[1:4] # "yth" (slice)
text[:3] # "Pyt" (from start)
text[3:] # "hon" (to end)
text[::2] # "Pto" (every 2nd)
text[::-1] # "nohtyP" (reverse)

String Formatting
f-strings
name = "Aubrey"
age = 2
f"Hello, {name}!" # "Hello, Aubrey!"
f"{name} is {age} years old" # "Aubrey is 2 years old"
f"Debug: {age=}" # "Debug: age=2"

Format method
template = "Hello, {name}! You're {age}."
template.format(name="Aubrey", age=2) # "Hello, Aubrey! You're 2."

Raw Strings

Normal string with an escaped tab
"This is:\tCool." # "This is: Cool."

Raw string with escape sequences
r"This is:\tCool." # "This is:\tCool."

Learn More on realpython.com/search by Typing:
strings ∙ string methods ∙ slice notation ∙ raw strings

Numbers & Math

Arithmetic Operators

10 + 3 # 13
10 - 3 # 7
10 * 3 # 30
10 / 3 # 3.3333333333333335
10 // 3 # 3
10 % 3 # 1
2 ** 3 # 8

Useful Functions

abs(-5) # 5
round(3.7) # 4
round(3.14159, 2) # 3.14
min(3, 1, 2) # 1
max(3, 1, 2) # 3
sum([1, 2, 3]) # 6

Learn More on realpython.com/search by Typing:
math ∙ operators ∙ built in functions

Conditionals

Python uses indentation for code blocks
Use 4 spaces per indentation level

If-Elif-Else

if age < 13:
 category = "child"
elif age < 20:
 category = "teenager"
else:
 category = "adult"

Comparison Operators

x == y # Equal to
x != y # Not equal to
x < y # Less than
x <= y # Less than or equal
x > y # Greater than
x >= y # Greater than or equal

Logical Operators

if age >= 18 and has_car:
 print("Roadtrip!")

if is_weekend or is_holiday:
 print("No work today.")

if not is_raining:
 print("You can go outside.")

Learn More on realpython.com/search by Typing:
conditional statements ∙ operators ∙ truthy falsy

 Continue your learning journey and become a Python expert at realpython.com/start-here

https://www.realpython.com/
https://realpython.com/what-can-i-do-with-python/
https://realpython.com/installing-python/
https://realpython.com/python-first-steps/
https://realpython.com/search
https://realpython.com/search?q=interpreter
https://realpython.com/search?q=run+a+script
https://realpython.com/search?q=command+line
https://realpython.com/search
https://realpython.com/search?q=comment
https://realpython.com/search?q=documentation
https://realpython.com/search
https://realpython.com/search?q=data+types
https://realpython.com/search?q=type+checking
https://realpython.com/search?q=isinstance
https://realpython.com/search?q=issubclass
https://realpython.com/search
https://realpython.com/search?q=variables
https://realpython.com/search?q=assignment+operator
https://realpython.com/search?q=walrus+operator
https://realpython.com/search
https://realpython.com/search?q=strings
https://realpython.com/search?q=string+methods
https://realpython.com/search?q=slice+notation
https://realpython.com/search?q=raw+strings
https://realpython.com/search
https://realpython.com/search?q=math
https://realpython.com/search?q=operators
https://realpython.com/search?q=built+in+functions
https://realpython.com/search
https://realpython.com/search?q=conditional+statements
https://realpython.com/search?q=operators
https://realpython.com/search?q=truthy+falsy

Loops

range(5) generates 0 through 4
Use enumerate() to get index and value
break exits the loop, continue skips to next
Be careful with while to not create an infinite loop

For Loops

Loop through range
for i in range(5): # 0, 1, 2, 3, 4
 print(i)

Loop through collection
fruits = ["apple", "banana"]
for fruit in fruits:
 print(fruit)

With enumerate for index
for i, fruit in enumerate(fruits):
 print(f"{i}: {fruit}")

While Loops

while True:
 user_input = input("Enter 'quit' to exit: ")
 if user_input == "quit":
 break
 print(f"You entered: {user_input}")

Loop Control

for i in range(10):
 if i == 3:
 continue # Skip this iteration
 if i == 7:
 break # Exit loop
 print(i)

Learn More on realpython.com/search by Typing:
for loop ∙ while loop ∙ enumerate ∙ control flow

Functions

Define functions with def
Always use () to call a function
Add return to send values back
Create anonymous functions with the lambda keyword

Defining Functions

def greet():
 return "Hello!"

def greet_person(name):
 return f"Hello, {name}!"

def add(x, y=10): # Default parameter
 return x + y

Calling Functions

greet() # "Hello!"
greet_person("Bartosz") # "Hello, Bartosz"
add(5, 3) # 8
add(7) # 17

Return Values

def get_min_max(numbers):
 return min(numbers), max(numbers)

minimum, maximum = get_min_max([1, 5, 3])

Useful Built-in Functions
callable() # Checks if an object can be called as a function
dir() # Lists attributes and methods
globals() # Get a dictionary of the current global symbol table
hash() # Get the hash value
id() # Get the unique identifier
locals() # Get a dictionary of the current local symbol table
repr() # Get a string representation for debugging

Lambda Functions

square = lambda x: x**2
result = square(5) # 25

With map and filter
numbers = [1, 2, 3, 4]
squared = list(map(lambda x: x**2, numbers))
evens = list(filter(lambda x: x % 2 == 0, numbers))

Learn More on realpython.com/search by Typing:
define functions ∙ return multiple values ∙ lambda

Classes

Classes are blueprints for objects
You can create multiple instances of one class
You commonly use classes to encapsulate data
Inside a class, you provide methods for interacting with the data
.__init__() is the constructor method
self refers to the instance

Defining Classes

class Dog:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def bark(self):
 return f"{self.name} says Woof!"

Create instance
my_dog = Dog("Frieda", 3)
print(my_dog.bark()) # Frieda says Woof!

Class Attributes & Methods

class Cat:
 species = "Felis catus" # Class attribute

 def __init__(self, name):
 self.name = name # Instance attribute

 def meow(self):
 return f"{self.name} says Meow!"

 @classmethod
 def create_kitten(cls, name):
 return cls(f"Baby {name}")

Inheritance

class Animal:
 def __init__(self, name):
 self.name = name

 def speak(self):
 pass

class Dog(Animal):
 def speak(self):
 return f"{self.name} barks!"

Learn More on realpython.com/search by Typing:
object oriented programming ∙ classes

Exceptions

When Python runs and encounters an error, it creates an exception
Use specific exception types when possible
else runs if no exception occurred
finally always runs, even after errors

Try-Except

try:
 number = int(input("Enter a number: "))
 result = 10 / number
except ValueError:
 print("That's not a valid number!")
except ZeroDivisionError:
 print("Cannot divide by zero!")
else:
 print(f"Result: {result}")
finally:
 print("Calculation attempted")

Common Exceptions

ValueError # Invalid value
TypeError # Wrong type
IndexError # List index out of range
KeyError # Dict key not found
FileNotFoundError # File doesn't exist

Raising Exceptions

def validate_age(age):
 if age < 0:
 raise ValueError("Age cannot be negative")
 return age

Learn More on realpython.com/search by Typing:
exceptions ∙ errors ∙ debugging

Collections

A collection is any container data structure that stores multiple items
If an object is a collection, then you can loop through it
Strings are collections, too
Use len() to get the size of a collection
You can check if an item is in a collection with the in keyword
Some collections may look similar, but each data structure solves specific
needs

Lists

Creating lists
empty = []
nums = [5]
mixed = [1, "two", 3.0, True]

List methods
nums.append("x") # Add to end
nums.insert(0, "y") # Insert at index 0
nums.extend(["z", 5]) # Extend with iterable
nums.remove("x") # Remove first "x"
last = nums.pop() # Pop returns last element

List indexing and checks
fruits = ["banana", "apple", "orange"]
fruits[0] # "banana"
fruits[-1] # "orange"
"apple" in fruits # True
len(fruits) # 3

Tuples

Creating tuples
point = (3, 4)
single = (1,) # Note the comma!
empty = ()

Basic tuple unpacking
point = (3, 4)
x, y = point
x # 3
y # 4

Extended unpacking
first, *rest = (1, 2, 3, 4)
first # 1
rest # [2, 3, 4]

 Continue your learning journey and become a Python expert at realpython.com/start-here

https://realpython.com/search
https://realpython.com/search?q=for+loop
https://realpython.com/search?q=while+loop
https://realpython.com/search?q=enumerate
https://realpython.com/search?q=control+flow
https://realpython.com/search
https://realpython.com/search?q=define+functions
https://realpython.com/search?q=return+multiple+values
https://realpython.com/search?q=lambda
https://realpython.com/search
https://realpython.com/search?q=object+oriented+programming
https://realpython.com/search?q=classes
https://realpython.com/search
https://realpython.com/search?q=exceptions
https://realpython.com/search?q=errors
https://realpython.com/search?q=debugging

Sets

Creating Sets
a = {1, 2, 3}
b = set([3, 4, 4, 5])

Set Operations
a | b # {1, 2, 3, 4, 5}
a & b # {3}
a - b # {1, 2}
a ^ b # {1, 2, 4, 5}

Dictionaries
Creating Dictionaries
empty = {}
pet = {"name": "Leo", "age": 42}

Dictionary Operations
pet["sound"] = "Purr!" # Add key and value
pet["age"] = 7 # Update value
age = pet.get("age", 0) # Get with default
del pet["sound"] # Delete key
pet.pop("age") # Remove and return

Dictionary Methods
pet = {"name": "Frieda", "sound": "Bark!"}
pet.keys() # dict_keys(['name', 'sound'])
pet.values() # dict_values(['Frieda', 'Bark!'])
pet.items() # dict_items([('name', 'Frieda'), ('sound', 'Bark!')])

Learn More on realpython.com/search by Typing:
list ∙ tuple ∙ set ∙ dictionary ∙ indexing ∙ unpacking

Comprehensions

You can think of comprehensions as condensed for loops
Comprehensions are faster than equivalent loops

List Comprehensions

Basic
squares = [x**2 for x in range(10)]

With condition
evens = [x for x in range(20) if x % 2 == 0]

Nested
matrix = [[i*j for j in range(3)] for i in range(3)]

Other Comprehensions

Dictionary comprehension
word_lengths = {word: len(word) for word in ["hello", "world"]}

Set comprehension
unique_lengths = {len(word) for word in ["who", "what", "why"]}

Generator expression
sum_squares = sum(x**2 for x in range(1000))

Learn More on realpython.com/search by Typing:
comprehensions ∙ data structures ∙ generators

File I/O

File Operations

Read an entire file
with open("file.txt", mode="r", encoding="utf-8") as file:
 content = file.read()

Read a file line by line
with open("file.txt", mode="r", encoding="utf-8") as file:
 for line in file:
 print(line.strip())

Write a file
with open("output.txt", mode="w", encoding="utf-8") as file:
 file.write("Hello, World!\n")

Append to a File
with open("log.txt", mode="a", encoding="utf-8") as file:
 file.write("New log entry\n")

Learn More on realpython.com/search by Typing:
files ∙ context manager ∙ pathlib

Imports & Modules

Prefer explicit imports over import *
Use aliases for long module names
Group imports: standard library, third-party libraries, user-defined modules

Import Styles

Import entire module
import math
result = math.sqrt(16)

Import specific function
from math import sqrt
result = sqrt(16)

Import with alias
import numpy as np
array = np.array([1, 2, 3])

Import all (not recommended)
from math import *

Package Imports

Import from package
import package.module
from package import module
from package.subpackage import module

Import specific items
from package.module import function, Class
from package.module import name as alias

Learn More on realpython.com/search by Typing:
import ∙ modules ∙ packages

Virtual Environments

Virtual Environments are often called “venv”
Use venvs to isolate project packages from the system-wide Python packages

Create Virtual Environment

$ python -m venv .venv

Activate Virtual Environment (Windows)

PS> .venv\Scripts\activate

Activate Virtual Environment (Linux & macOS)

$ source .venv/bin/activate

Deactivate Virtual Environment

(.venv) $ deactivate

Learn More on realpython.com/search by Typing:
virtual environment ∙ venv

Packages

The official third-party package repository is the Python Package Index (PyPI)

Install Packages

$ python -m pip install requests

Save Requirements & Install from File

$ python -m pip freeze > requirements.txt
$ python -m pip install -r requirements.txt

Related Tutorials
Installing Python Packages
Requirements Files in Python Projects

Miscellaneous

Truthy Falsy

-42 0

3.14 0.0

"John" ""

[1, 2, 3] []

("apple", "banana") ()

{"key": None} {}

None

Pythonic Constructs

Swap variables
a, b = b, a

Flatten a list of lists
matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
flat = [item for sublist in matrix for item in sublist]

Remove duplicates
unique_unordered = list(set(my_list))

Remove duplicates, preserve order
unique = list(dict.fromkeys(my_list))

Count occurrences
from collections import Counter

counts = Counter(my_list)

Learn More on realpython.com/search by Typing:
counter ∙ tricks

Do you want to go deeper on any topic in the Python curriculum?

At Real Python you can immerse yourself in any topic. Level up your
skills effectively with curated resources like:

Video courses
Written tutorials
Interactive quizzes
Podcast interviews

Continue your learning journey and become a Python expert at
realpython.com/start-here

 Continue your learning journey and become a Python expert at realpython.com/start-here

https://realpython.com/search
https://realpython.com/search?q=list
https://realpython.com/search?q=tuple
https://realpython.com/search?q=set
https://realpython.com/search?q=dictionary
https://realpython.com/search?q=indexing
https://realpython.com/search?q=unpacking
https://realpython.com/search
https://realpython.com/search?q=comprehensions
https://realpython.com/search?q=data+structures
https://realpython.com/search?q=generators
https://realpython.com/search
https://realpython.com/search?q=files
https://realpython.com/search?q=context+manager
https://realpython.com/search?q=pathlib
https://realpython.com/search
https://realpython.com/search?q=import
https://realpython.com/search?q=modules
https://realpython.com/search?q=packages
https://realpython.com/search
https://realpython.com/search?q=virtual+environment
https://realpython.com/search?q=venv
https://pypi.org/
https://realpython.com/search?q=install+packages+pip
https://realpython.com/search?q=requirements.txt+python
https://realpython.com/search
https://realpython.com/search?q=counter
https://realpython.com/search?q=tricks
https://realpython.com/start-here/

