Real Python
Pocket Reference
m l é Visit realpython.com to
turbocharge your
Python learning with
in-depth tutorials,
real-world examples,
and expert guidance.

Yython

Getting Started

Follow these guides to kickstart your Python journey:
¢ realpython.com/what-can-i-do-with-python

¢ realpython.com/installing-python

¢ realpython.com/python-first-steps

Start the Interactive Shell
$ python

Quit the Interactive Shell

>>> exit()

Run a Script
$ python my_script.py

Run a Script in Interactive Mode

$ python -i my_script.py

Learn More on realpython.com/search:

interpreter ‘- run a script - command line

Comments

* Always add a space after the #
® Use comments to explain “why” of your code

Write Comments

This is a comment
print("This code will not run.")
print("This will run.") # Comments are ignored by Python

Learn More on realpython.com/search:

comment - documentation

Data Types

® Pythonis dynamically typed

® Use None to represent missing or optional values

® Use type() to check object type

® Check for a specific type with isinstance()
issubclass() checksifaclassis asubclass

Type Investigation

type(42) # <class 'int'>
type(3.14) # <class 'float'>
type("Hello") # <class 'str'>
type(True) # <class 'bool'>
type(None) # <class 'NoneType'>

True
True - everything inherits from object

isinstance(3.14, float)
issubclass(int, object)

Type Conversion

int("42") # 42

float("3.14") #3.14

str(42) # "42"

bool(1) # True

1ist(“abc") # ["a", "b”, ”C”]

Learn More on realpython.com/search:

data types - type checking - isinstance - issubclass

Variables & Assignment

® Variables are created when first assigned
® Use descriptive variable names
* Follow snake_case convention

Basic Assignment

name = "Leo" # String
age = 7 # Integer
height = 5.6 # Float
is_cat = True # Boolean
flaws = None # None type

Parallel & Chained Assignments

x, y =10, 20 # Assign multiple values
a=b=c=09 # Give same value to multiple variables

Augmented Assignments

counter += 1
numbers += [4, 5]
permissions |= write

Learn More on realpython.com/search:

variables - assignment operator - walrus operator

Strings

* It’'srecommended to use double-quotes for strings
® Use "\n" to create a line break in a string
* To write a backslash in a normal string, write "\\"

Creating Strings

single = 'Hello’
double = "World"
multi = """Multiple

line string"""

String Operations

greeting = "me" + "ow!" # "meow!"
repeat = "Meow!" * 3 # "Meow!Meow!Meow!"
length = len("Python") # 6

String Methods

"a".upper() # "A"
"A".lower () # "a"

" a ".strip() # "a"
"abc".replace("bc", "ha") # "aha"
"a b".split() # ["a", "b"]
"-".join(["a", "b"]) # "a-b"
String Indexing & Slicing

text = "Python"

text[0] # "P" (first)

text[-1] # "n" (last)

text[1:4] # "yth" (slice)

text[:3] # "Pyt" (from start)
text[3:] # "hon" (to end)

text[::2] # "Pto" (every 2nd)
text[::-1] # "nohtyP" (reverse)

String Formatting

f-strings

name = "Aubrey"

age = 2

f"Hello, {name}!'"

f"{name} is {age} years old"
f"Debug: {age=}"

"Hello, Aubrey!"
"Aubrey is 2 years old"
"Debug: age=2"

Format method
template = "Hello, {name}! You're {age}."

template.format(name="Aubrey", age=2) # "Hello, Aubrey! You're 2."

Raw Strings

Normal string with an escaped tab

"This is:\tCool." # "This is: Cool."

Raw string with escape sequences
r"This is:\tCool." # "This is:\tCool."

Learn More on realpython.com/search:

strings - string methods - slice notation - raw strings

®) Continue your learning journey and become a Python expert at realpython.com/start-here

Numbers & Math

Arithmetic Operators

10 + 3 # 13

10 - 3 # 7

10 * 3 # 30

10 / 3 # 3.3333333333333335
10 // 3 # 3

10 % 3 # 1

2 ** 3 # 8

Useful Functions

abs(-5) #5
round(3.7) # 4
round(3.14159, 2) # 3.14
min(3, 1, 2) # 1
max(3, 1, 2) # 3
sum([1, 2, 3]) #6

Learn More on realpython.com/search:

math - operators - built in functions

Conditionals

® Python uses indentation for code blocks
® Use 4 spaces per indentation level

If-Elif-Else

if age < 13:

category = "child"
elif age < 20:

category = "teenager"
else:

category = "adult"

Comparison Operators

X ==y # Equal to

x =y # Not equal to

X <y # Less than

X <=y # Less than or equal

X >y # Greater than

X >=y # Greater than or equal

Logical Operators
if age >= 18 and has_car:
print("Roadtrip!")

if is_weekend or is_holiday:
print("No work today.")

if not is_raining:
print("You can go outside.")

Learn More on realpython.com/search:

conditional statements - operators - truthy falsy

& Kool Bython

https://www.realpython.com/
https://realpython.com/what-can-i-do-with-python/
https://realpython.com/installing-python/
https://realpython.com/python-first-steps/
https://realpython.com/search
https://realpython.com/search?q=interpreter
https://realpython.com/search?q=run+a+script
https://realpython.com/search?q=command+line
https://realpython.com/search
https://realpython.com/search?q=comment
https://realpython.com/search?q=documentation
https://realpython.com/search
https://realpython.com/search?q=data+types
https://realpython.com/search?q=type+checking
https://realpython.com/search?q=isinstance
https://realpython.com/search?q=issubclass
https://realpython.com/search
https://realpython.com/search?q=variables
https://realpython.com/search?q=assignment+operator
https://realpython.com/search?q=walrus+operator
https://realpython.com/search
https://realpython.com/search?q=strings
https://realpython.com/search?q=string+methods
https://realpython.com/search?q=slice+notation
https://realpython.com/search?q=raw+strings
https://realpython.com/search
https://realpython.com/search?q=math
https://realpython.com/search?q=operators
https://realpython.com/search?q=built+in+functions
https://realpython.com/search
https://realpython.com/search?q=conditional+statements
https://realpython.com/search?q=operators
https://realpython.com/search?q=truthy+falsy

Loops

* range(5) generates 0 through 4

* Useenumerate() to getindexand value

* break exits the loop, continue skips to next

* Be careful with while to not create an infinite loop

For Loops

Loop through range
for i in range(5): #0, 1,2, 3,4
print(i)

Loop through collection

fruits = ["apple"”, "banana"]

for fruit in fruits:
print(fruit)

With enumerate for index
for i, fruit in enumerate(fruits):
print(f"{i}: {fruit}")

While Loops

while True:
user_input = input("Enter 'quit' to exit: ")
if user_input == "quit":
break
print(f"You entered: {user_input}")

Loop Control

for i in range(10):

if i ==

continue # Skip this iteration
if 1 == 7:

break # Exit loop
print(i)

Learn More on realpython.com/search:

for loop ‘- while loop - enumerate - control flow

Functions

¢ Define functions with def

e Always use () to call a function

® Add return to send values back

* Create anonymous functions with the lambda keyword

Defining Functions

def greet():
return "Hello!"

def greet_person(name):
return f"Hello, {name}!"

def add(x, y=10):
return x + vy

Default parameter

Calling Functions

greet() # "Hello!"
greet_person("Bartosz") # "Hello, Bartosz"
add(5, 3) # 8

add(7) # 17

Return Values

def get_min_max(numbers):
return min(numbers), max(numbers)

minimum, maximum

= get_min_max([1, 5, 3])

Useful Built-in Functions

callable() #

dir() #

globals() # Get
hash() # Get
id() # Get
locals() # Get
repr() # Get

Lambda Functions

square

Checks if an object can be called as a function
Lists attributes and methods

a dictionary of the current global symbol table
the hash value

the unique identifier

a dictionary of the current local symbol table
a string representation for debugging

lambda x: x#**2

result = square(5) # 25

With map and filter

numbers = [1, 2,

3, 4]

squared = list(map(lambda x: x**2, numbers))
evens = list(filter(lambda x: x % 2 == @, numbers))

Learn More on realpython.com/search:

define functions

return multiple values - lambda

Classes

® Classes are blueprints for objects

® You can create multiple instances of one class

* You commonly use classes to encapsulate data

* Inside a class, you provide methods for interacting with the data
e . __init__() isthe constructor method

e self refersto the instance

Defining Classes

class Dog:

def __init__(self, name, age):
self.name = name
self.age = age

def bark(self):
return f"{self.name} says Woof!"

Create instance
my_dog = Dog('Frieda", 3)
print(my_dog.bark()) # Frieda says Woof!

Class Attributes & Methods

class Cat:
species = "Felis catus” # Class attribute

def __init__(self, name):

self.name = name # Instance attribute

def meow(self):
return f"{self.name} says Meow!"

@classmethod
def create_kitten(cls, name):
return cls(f"Baby {name}")

Inheritance

class Animal:
def __init__(self, name):
self.name = name

def speak(self):
pass

class Dog(Animal):
def speak(self):
return f"{self.name} barks!"

Learn More on realpython.com/search:
object oriented programming - classes

Exceptions

* When Python runs and encounters an error, it creates an exception
* Use specific exception types when possible

¢ else runsif no exception occurred

e finally always runs, even after errors

Try-Except

try:
number = int(input("Enter a number: "))
result = 10 / number
except ValueError:
print("That's not a valid number!")
except ZeroDivisionError:
print(“Cannot divide by zero!")
else:
print(f"Result: {result}")
finally:
print(“"Calculation attempted")

Common Exceptions

ValueError # Invalid value
TypeError # Wrong type
IndexError # List index out of range

KeyError # Dict key not found
FileNotFoundError # File doesn't exist

®) Continue your learning journey and become a Python expert at realpython.com/start-here

Raising Exceptions

def validate_age(age):
if age < @:
raise ValueError("Age cannot be negative")
return age

Learn More on realpython.com/search:
exceptions - errors - debugging

Collections

® Acollection is any container data structure that stores multiple items

¢ Ifanobjectis a collection, then you can loop through it

¢ Strings are collections, too

* Uselen() to get the size of a collection

® You can check if anitem is in a collection with the in keyword

* Some collections may look similar, but each data structure solves specific
needs

Lists

Creating lists
empty = []

nums = [5]

mixed = [1, "two", 3.0, True]

List methods

nums .append("x"
nums.insert(0, "y")
nums.extend(["z", 5])
nums . remove("x"

last = nums.pop()

Add to end
Insert at index 0
Extend with iterable

Remove first "x
Pop returns last element

List indexing and checks

fruits = ["banana", "apple", "orange"]
fruits[0] # "banana"
fruits[-1] # "orange"
"apple" in fruits # True
len(fruits) #3
Tuples

Creating tuples

point = (3, 4)

single = (1,) # Note the comma!
empty = ()

Basic tuple unpacking
point = (3, 4)
X, y = point

X

3
y # 4
Extended unpacking
first, *rest = (1, 2, 3, 4)
first # 1
rest # [2, 3, 4]

& Kool Bython

https://realpython.com/search
https://realpython.com/search?q=for+loop
https://realpython.com/search?q=while+loop
https://realpython.com/search?q=enumerate
https://realpython.com/search?q=control+flow
https://realpython.com/search
https://realpython.com/search?q=define+functions
https://realpython.com/search?q=return+multiple+values
https://realpython.com/search?q=lambda
https://realpython.com/search
https://realpython.com/search?q=object+oriented+programming
https://realpython.com/search?q=classes
https://realpython.com/search
https://realpython.com/search?q=exceptions
https://realpython.com/search?q=errors
https://realpython.com/search?q=debugging

Sets

H*

Creating Sets
a={1,2, 3}
b = set([3, 4, 4, 5])

Set Operations

alb # {1, 2, 3, 4, 5}
a&b # {3

a-b #{1, 2}

a’rb # {1, 2, 4, 5}
Dictionaries

Creating Dictionaries
empty = {}
pet = {"name": "Leo", "age": 42}

Dictionary Operations

pet[“sound"] = "Purr!” # Add key and value
pet[‘age"] = 7 # Update value

age = pet.get("age”, @) # Get with default
del pet["sound"] # Delete key
pet.pop(“age") # Remove and return

Dictionary Methods

pet = {"name": "Frieda", "sound": "Bark!"}

pet.keys() # dict_keys(['name', 'sound'])

pet.values() # dict_values(['Frieda', 'Bark!'])

pet.items() # dict_items([('name', 'Frieda'), ('sound', 'Bark!')])

Learn More on realpython.com/search:

list - tuple - set - dictionary - indexing - unpacking

Comprehensions

® You can think of comprehensions as condensed for loops
® Comprehensions are faster than equivalent loops

List Comprehensions
Basic
squares = [x**2 for x in range(10)]

With condition
evens = [x for x in range(28) if x % 2 == 8]

Nested
matrix = [[i*j for j in range(3)] for i in range(3)]

Other Comprehensions

Dictionary comprehension
word_lengths = {word: len(word) for word in ["hello", "world"]}

Set comprehension
unique_lengths = {len(word) for word in ["who", "what", "why"]}

Generator expression
sum_squares = sum(x**2 for x in range(1000))

Learn More on realpython.com/search:

comprehensions - data structures - generators

File 1/0

File Operations

Read an entire file
with open("file.txt", mode="r", encoding="utf-8") as file:
content = file.read()

Read a file line by line
with open("file.txt", mode="r", encoding="utf-8") as file:
for line in file:
print(line.strip())

Write a file

with open("output.txt"”, mode="w", encoding="utf-8") as file:

file.write("Hello, World!\n")

Append to a File
with open("log.txt", mode="a", encoding="utf-8") as file:
file.write("New log entry\n")

Learn More on realpython.com/search:

files - context manager - pathlib

Imports & Modules

e Prefer explicitimports over import *
® Use aliases for long module names
* Group imports: standard library, third-party libraries, user-defined modules

Import Styles

Import entire module
import math
result = math.sqrt(16)

Import specific function
from math import sqrt
result = sqrt(16)

Import with alias
import numpy as np
array = np.array([1, 2, 3])

Import all (not recommended)
from math import *

Package Imports

Import from package

import package.module

from package import module

from package.subpackage import module

Import specific items
from package.module import function, Class
from package.module import name as alias

Learn More on realpython.com/search:

import - modules - packages

Virtual Environments

® Virtual Environments are often called “venv”
® Usevenvs to isolate project packages from the system-wide Python packages

Create Virtual Environment

$ python -m venv .venv

Activate Virtual Environment (Windows)

PS> .venv\Scripts\activate

Activate Virtual Environment (Linux & macOS)

$ source .venv/bin/activate

Deactivate Virtual Environment

(.venv) $ deactivate

Learn More on realpython.com/search:
virtual environment - venv

Packages

¢ The official third-party package repository is the Python Package Index (PyPI)

Install Packages

$ python -m pip install requests

Save Requirements & Install from File

$ python -m pip freeze > requirements.txt
$ python -m pip install -r requirements.txt

Related Tutorials

¢ Installing Python Packages
* Requirements Files in Python Projects

Miscellaneous
Truthy Falsy
-42 (%]
3.14 0.0
"John" "
(1, 2, 3] [1
("apple", "banana") 0)
{"key": None} {}
None

®) Continue your learning journey and become a Python expert at realpython.com/start-here

Pythonic Constructs

Swap variables
a, b=">b, a

Flatten a list of lists
matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
flat = [item for sublist in matrix for item in sublist]

Remove duplicates
unique_unordered = list(set(my_list))

Remove duplicates, preserve order
unique = list(dict.fromkeys(my_list))

Count occurrences
from collections import Counter

counts = Counter(my_list)

Learn More on realpython.com/search:

counter - tricks

Do you want to go deeper on any topic in the Python curriculum?

At Real Python you can immerse yourself in any topic. Level up your
skills effectively with curated resources like:

e Learning paths

« Video courses

o Written tutorials

o Interactive quizzes

e Podcast interviews

« Reference articles

Continue your learning journey and become a Python expert at
realpython.com/start-here _ @J

& Kool Bython

https://realpython.com/search
https://realpython.com/search?q=list
https://realpython.com/search?q=tuple
https://realpython.com/search?q=set
https://realpython.com/search?q=dictionary
https://realpython.com/search?q=indexing
https://realpython.com/search?q=unpacking
https://realpython.com/search
https://realpython.com/search?q=comprehensions
https://realpython.com/search?q=data+structures
https://realpython.com/search?q=generators
https://realpython.com/search
https://realpython.com/search?q=files
https://realpython.com/search?q=context+manager
https://realpython.com/search?q=pathlib
https://realpython.com/search
https://realpython.com/search?q=import
https://realpython.com/search?q=modules
https://realpython.com/search?q=packages
https://realpython.com/search
https://realpython.com/search?q=virtual+environment
https://realpython.com/search?q=venv
https://pypi.org/
https://realpython.com/search?q=install+packages+pip
https://realpython.com/search?q=requirements.txt+python
https://realpython.com/search
https://realpython.com/search?q=counter
https://realpython.com/search?q=tricks
https://realpython.com/learning-paths/
https://realpython.com/search?kind=course
https://realpython.com/search?kind=article
https://realpython.com/quizzes/
https://realpython.com/podcasts/rpp/
https://realpython.com/ref/
https://realpython.com/start-here/

