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Arithmetic Operators in Python
Operator Type Operation Sample

Expression
Result

+ Unary Positive +a
a  without any transformation since this is simply a complement to

negation

+ Binary Addition a + b The arithmetic sum of a  and b

- Unary Negation -a The value of a  but with the opposite sign

- Binary Subtraction a - b b  subtracted from a

* Binary Multiplication a * b The product of a  and b

/ Binary Division a / b The quotient of a  divided by b , expressed as a float

% Binary Modulo a % b The remainder of a  divided by b

// Binary Floor division or integer
division

a // b
The quotient of a  divided by b , rounded to the next smallest whole
number

** Binary Exponentiation a**b a  raised to the power of b



Comparison Operators in Python
Operator Operation Sample Expression Result

== Equal to a == b
• True  if the value of a  is equal to the value of b
• False  otherwise

!= Not equal to a != b
• True  if a  is not equal to b
• False  otherwise

< Less than a < b
• True  if a  is less than b
• False  otherwise

<= Less than or equal to a <= b
• True  if a  is less than or equal to b
• False  otherwise

> Greater than a > b
• True  if a  is greater than b
• False  otherwise

>= Greater than or equal to a >= b
• True  if a  is greater than or equal to b
• False  otherwise



Boolean Operators in Python
Operator Sample Expression Result

and x and y
• True  if both x  and y  are True
• False  otherwise

or x or y
• True  if either x  or y  is True
• False  otherwise

not not x
• True  if x  is False
• False  if x  is True

If x  is x and y  returns

Truthy y

Falsy x

If x  is x or y  returns

Truthy x

Falsy y

If x  is not x  returns

Truthy False

Falsy True



Identity Operators in Python
Operator Sample Expression Result

is x is y
• True  if x  and y  hold a reference to the same in-memory object
• False  otherwise

is not x is not y
• True  if x  points to an object di�erent from the object that y  points to
• False  otherwise

Membership Operators in Python
Operator Sample Expression Result

in value in collection
• True  if value  is present in collection
• False  otherwise

not in value not in collection
• True  if value  is not present in collection  of values
• False  otherwise

https://docs.python.org/3/reference/expressions.html#is
https://docs.python.org/3/reference/expressions.html#is-not
https://docs.python.org/3/reference/expressions.html#in
https://docs.python.org/3/reference/expressions.html#not-in


Bitwise Operators in Python
Operator Operation Sample

Expression
Result

& Bitwise AND a & b
• Each bit position in the result is the logical AND of the bits in the corresponding position of the
operands.
• 1  if both bits are 1 , otherwise 0 .

| Bitwise OR a | b
• Each bit position in the result is the logical OR of the bits in the corresponding position of the
operands.
• 1  if either bit is 1 , otherwise, 0 .

~ Bitwise NOT ~a
• Each bit position in the result is the logical negation of the bit in the corresponding position of
the operand.
• 1  if the bit is 0  and 0  if the bit is 1 .

^
Bitwise XOR (exclusive
OR) a ^ b

• Each bit position in the result is the logical XOR of the bits in the corresponding position of the
operands.
• 1  if the bits in the operands are di�erent, 0  if they’re equal.

>> Bitwise right shi� a >> n Each bit is shi�ed right n  places.

<< Bitwise le� shi� a << n Each bit is shi�ed le� n  places.



Operator Precedence in Python
Operators Description

** Exponentiation

+x , -x , ~x Unary positive, unary negation, bitwise negation

* , / , // , % Multiplication, division, floor division, modulo

+ , - Addition, subtraction

<< , >> Bitwise shi�s

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

== , != , < , <= , > , >= , is , is not , in , not in Comparisons, identity, and membership

not Boolean NOT

and Boolean AND

or Boolean OR

:= Walrus

https://realpython.com/python-modulo-operator/


Arithmethic Augmented Assignment Operators

Operator Description Sample
Expression

Equivalent
Expression

+= Adds the right operand to the le� operand and stores the result in the le� operand x += y x = x + y

-= Subtracts the right operand from the le� operand and stores the result in the le� operand x -= y x = x - y

*= Multiplies the right operand with the le� operand and stores the result in the le� operand x *= y x = x * y

/= Divides the le� operand by the right operand and stores the result in the le� operand x /= y x = x / y

//=
Performs floor division of the le� operand by the right operand and stores the result in the le�
operand

x //= y x = x // y

%=
Finds the remainder of dividing the le� operand by the right operand and stores the result in
the le� operand

x %= y x = x % y

**=
Raises the le� operand to the power of the right operand and stores the result in the le�
operand

x **= y x = x**y

https://docs.python.org/3/glossary.html#term-floor-division


Bitwise Augmented Assignment Operators
Operator Operation Example Equivalent

&= Augmented bitwise AND (conjunction) x &= y x = x & y

|= Augmented bitwise OR (disjunction) x |= y x = x | y

^= Augmented bitwise XOR (exclusive disjunction) x ^= y x = x ^ y

>>= Augmented bitwise right shi� x >>= y x = x >> y

<<= Augmented bitwise le� shi� x <<= y x = x << y

https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Exclusive_or


Concatenation and Repetition Operators
Operator Operation Sample Expression Result

+ Concatenation seq_1 + seq_2 A new sequence containing all the items from both operands

* Repetition seq * n A new sequence containing the items of seq  repeated n  times

Concatenation and Repetition Augmented Assignment
Operators

Operator Description Example

+=
• Runs an augmented concatenation operation on the target sequence.
• Mutable sequences are updated in place.
• If the sequence is immutable, then a new sequence is created and assigned back to the target name.

seq_1 += seq_2

*=
• Adds seq  to itself n  times.
• Mutable sequences are updated in place.
• If the sequence is immutable, then a new sequence is created and assigned back to the target name.

seq *= n


