Operators and
Expressions in Python

Table of Contents

e Arithmetic Operators in Python

e Comparison Operators in Python

e Boolean Operators in Python

* Identity Operators in Python

e Membership Operators in Python

 Bitwise Operators in Python

e Operator Precedence in Python

* Arithmetic Augmented Assignment Operators

 Bitwise Augmented Assignment Operators

e Concatenation and Repetition Operators
e Concatenation and Repetition Augmented Assignment Operators Q
eall Bjthon

Arithmetic Operators in Python

Sample

Operator Type Operation Expression Result
N Unary Positive ‘a r?eg\;ig;cr)]ut any transformation since this is simply a complement to
+ Binary Addition a+b The arithmetic sum of a and b
- Unary Negation -a The value of a but with the opposite sign
- Binary Subtraction a-b b subtracted from a
* Binary = Multiplication a*b The product of a and b
/ Binary Division al/b The quotient of a divided by b, expressed as a float
% Binary Modulo a%b The remainder of a divided by b
/) ey Zli\c/)ics)irodnivision or integer a // b szncgl;c:tient of a divided by b, rounded to the next smallest whole
** Binary = Exponentiation a**b a raised to the power of b

Comparison Operators in Python

Operator Operation Sample Expression Result

True if the value of a is equal to the value of b

’ « False otherwise

o T if ai

|- Not equal to a 1= b rue if a is ngtequalto b
« False otherwise
° f 1 h

< Less than a < b True if a is le.sst an b
« False otherwise

<= Less than or equal to 4 <= b « True if a is le§s than orequal to b
« False otherwise

> Greater than a>b « True if a is gr.eaterthan b
« False otherwise
° f 1 h

- Greater than or equal to a >= b True if a is greater than orequalto b

False otherwise

Boolean Operators in Python

Operator Sample Expression Result If x is x and y returns

True ifboth x and y are True Truthy vy

and X and
y False otherwise

Falsy X

True if either x or y is True

or X or y herwi
« False otherwise If x is X or y returns
ot ot « True |f.x |s' False Truthy X
« False if x is True
Falsy y

If x is not x returns
Truthy False

Falsy True

Identity Operators in Python

Operator Sample Expression Result
: . « True if x and y hold a reference to the same in-memory object
is X is y .
« False otherwise
. : « True if x points to an object different from the object that y points to
1s not X 1s not y

« False otherwise

Membership Operators in Python

Operator Sample Expression Result

« True if value ispresentin collection
« False otherwise

in value in collection

« True if value isnot presentin collection of values
« False otherwise

not in value not in collection

https://docs.python.org/3/reference/expressions.html#is
https://docs.python.org/3/reference/expressions.html#is-not
https://docs.python.org/3/reference/expressions.html#in
https://docs.python.org/3/reference/expressions.html#not-in

Bitwise Operators in Python

Sample

. Result
Expression

Operator Operation
« Each bit position in the result is the logical AND of the bits in the corresponding position of the
& Bitwise AND a&hb operands.
« 1 if both bits are 1, otherwise 0.

« Each bit position in the result is the logical OR of the bits in the corresponding position of the
Bitwise OR a| b operands.
« 1 if eitherbitis 1, otherwise, 0.

« Each bit position in the result is the logical negation of the bit in the corresponding position of
~ Bitwise NOT ~a the operand.
« 1 ifthe bitis 8 and @ if the bitis 1.

« Each bit position in the result is the logical XOR of the bits in the corresponding position of the

Bitwise XOR (exclusive
(a*b operands.

R
OR) + 1 if the bits in the operands are different, @ if they’re equal.
>> Bitwise right shift a>>n Each bit is shifted right n places.
<< Bitwise left shift a << n Each bit is shifted left n places.

Operator Precedence in Python

Operators Description
*% Exponentiation
+X, =X, ~X Unary positive, unary negation, bitwise negation
*,/,//,% Multiplication, division, floor division, modulo
+, - Addition, subtraction
<<, >> Bitwise shifts
& Bitwise AND
A Bitwise XOR

Bitwise OR

==, = <, <=,> >=1s, is not, in, not in Comparisons, identity, and membership

not Boolean NOT
and Boolean AND
or Boolean OR
i= Walrus

https://realpython.com/python-modulo-operator/

Arithmethic Augmented Assignment Operators

Operator Description Sampl.e Equlval.ent
Expression Expression
+= Adds the right operand to the left operand and stores the result in the left operand X +=y X =X +y
-= Subtracts the right operand from the left operand and stores the result in the left operand X -= Yy X =X -y
*= Multiplies the right operand with the left operand and stores the result in the left operand X *=y X = X *xy
/= Divides the left operand by the right operand and stores the result in the left operand X /=y X =X/Y
/)= Performs floor division of the left operand by the right operand and stores the result in the left < Jfs % 5 5% Jf
operand
- Finds the remainder of dividing the left operand by the right operand and stores the result in « %s “ = x 9
° the left operand i -
Raises the left operand to the power of the right operand and stores the result in the left
* k= X *%= Yy X = X**y

operand

https://docs.python.org/3/glossary.html#term-floor-division

Bitwise Augmented Assignment Operators

Operator Operation Example Equivalent
&= Augmented bitwise AND (conjunction) X &=y X =X &Yy
| = Augmented bitwise OR (disjunction) X |=y X =X |y
A= Augmented bitwise XOR (exclusive disjunction) X A=y X =X My
>>= Augmented bitwise right shift X >>=y X = X >> Yy
<<= Augmented bitwise left shift X <<=y X = X <<y

https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Exclusive_or

Concatenation and Repetition Operators

Operator Operation Sample Expression Result
+ Concatenation seq_1 + seq_2 A new sequence containing all the items from both operands
* Repetition seq * n A new sequence containing the items of seq repeated n times

Concatenation and Repetition Augmented Assignment
Operators

Operator Description Example

» Runs an augmented concatenation operation on the target sequence.
+= » Mutable sequences are updated in place. seq_1 += seq_2
« If the sequence is immutable, then a new sequence is created and assigned back to the target name.

+Adds seq toitself n times.
*= « Mutable sequences are updated in place. seq *= n
« If the sequence is immutable, then a new sequence is created and assigned back to the target name.

