
Operators and
Expressions in Python
Table of Contents

Arithmetic Operators in Python
Comparison Operators in Python
Boolean Operators in Python
Identity Operators in Python
Membership Operators in Python
Bitwise Operators in Python
Operator Precedence in Python
Arithmetic Augmented Assignment Operators
Bitwise Augmented Assignment Operators
Concatenation and Repetition Operators
Concatenation and Repetition Augmented Assignment Operators

Arithmetic Operators in Python
Operator Type Operation Sample

Expression
Result

+ Unary Positive +a
a without any transformation since this is simply a complement to

negation

+ Binary Addition a + b The arithmetic sum of a and b

- Unary Negation -a The value of a but with the opposite sign

- Binary Subtraction a - b b subtracted from a

* Binary Multiplication a * b The product of a and b

/ Binary Division a / b The quotient of a divided by b , expressed as a float

% Binary Modulo a % b The remainder of a divided by b

// Binary Floor division or integer
division

a // b
The quotient of a divided by b , rounded to the next smallest whole
number

** Binary Exponentiation a**b a raised to the power of b

Comparison Operators in Python
Operator Operation Sample Expression Result

== Equal to a == b
• True if the value of a is equal to the value of b
• False otherwise

!= Not equal to a != b
• True if a is not equal to b
• False otherwise

< Less than a < b
• True if a is less than b
• False otherwise

<= Less than or equal to a <= b
• True if a is less than or equal to b
• False otherwise

> Greater than a > b
• True if a is greater than b
• False otherwise

>= Greater than or equal to a >= b
• True if a is greater than or equal to b
• False otherwise

Boolean Operators in Python
Operator Sample Expression Result

and x and y
• True if both x and y are True
• False otherwise

or x or y
• True if either x or y is True
• False otherwise

not not x
• True if x is False
• False if x is True

If x is x and y returns

Truthy y

Falsy x

If x is x or y returns

Truthy x

Falsy y

If x is not x returns

Truthy False

Falsy True

Identity Operators in Python
Operator Sample Expression Result

is x is y
• True if x and y hold a reference to the same in-memory object
• False otherwise

is not x is not y
• True if x points to an object di�erent from the object that y points to
• False otherwise

Membership Operators in Python
Operator Sample Expression Result

in value in collection
• True if value is present in collection
• False otherwise

not in value not in collection
• True if value is not present in collection of values
• False otherwise

https://docs.python.org/3/reference/expressions.html#is
https://docs.python.org/3/reference/expressions.html#is-not
https://docs.python.org/3/reference/expressions.html#in
https://docs.python.org/3/reference/expressions.html#not-in

Bitwise Operators in Python
Operator Operation Sample

Expression
Result

& Bitwise AND a & b
• Each bit position in the result is the logical AND of the bits in the corresponding position of the
operands.
• 1 if both bits are 1 , otherwise 0 .

| Bitwise OR a | b
• Each bit position in the result is the logical OR of the bits in the corresponding position of the
operands.
• 1 if either bit is 1 , otherwise, 0 .

~ Bitwise NOT ~a
• Each bit position in the result is the logical negation of the bit in the corresponding position of
the operand.
• 1 if the bit is 0 and 0 if the bit is 1 .

^
Bitwise XOR (exclusive
OR) a ^ b

• Each bit position in the result is the logical XOR of the bits in the corresponding position of the
operands.
• 1 if the bits in the operands are di�erent, 0 if they’re equal.

>> Bitwise right shi� a >> n Each bit is shi�ed right n places.

<< Bitwise le� shi� a << n Each bit is shi�ed le� n places.

Operator Precedence in Python
Operators Description

** Exponentiation

+x , -x , ~x Unary positive, unary negation, bitwise negation

* , / , // , % Multiplication, division, floor division, modulo

+ , - Addition, subtraction

<< , >> Bitwise shi�s

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

== , != , < , <= , > , >= , is , is not , in , not in Comparisons, identity, and membership

not Boolean NOT

and Boolean AND

or Boolean OR

:= Walrus

https://realpython.com/python-modulo-operator/

Arithmethic Augmented Assignment Operators

Operator Description Sample
Expression

Equivalent
Expression

+= Adds the right operand to the le� operand and stores the result in the le� operand x += y x = x + y

-= Subtracts the right operand from the le� operand and stores the result in the le� operand x -= y x = x - y

*= Multiplies the right operand with the le� operand and stores the result in the le� operand x *= y x = x * y

/= Divides the le� operand by the right operand and stores the result in the le� operand x /= y x = x / y

//=
Performs floor division of the le� operand by the right operand and stores the result in the le�
operand

x //= y x = x // y

%=
Finds the remainder of dividing the le� operand by the right operand and stores the result in
the le� operand

x %= y x = x % y

**=
Raises the le� operand to the power of the right operand and stores the result in the le�
operand

x **= y x = x**y

https://docs.python.org/3/glossary.html#term-floor-division

Bitwise Augmented Assignment Operators
Operator Operation Example Equivalent

&= Augmented bitwise AND (conjunction) x &= y x = x & y

|= Augmented bitwise OR (disjunction) x |= y x = x | y

^= Augmented bitwise XOR (exclusive disjunction) x ^= y x = x ^ y

>>= Augmented bitwise right shi� x >>= y x = x >> y

<<= Augmented bitwise le� shi� x <<= y x = x << y

https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Exclusive_or

Concatenation and Repetition Operators
Operator Operation Sample Expression Result

+ Concatenation seq_1 + seq_2 A new sequence containing all the items from both operands

* Repetition seq * n A new sequence containing the items of seq repeated n times

Concatenation and Repetition Augmented Assignment
Operators

Operator Description Example

+=
• Runs an augmented concatenation operation on the target sequence.
• Mutable sequences are updated in place.
• If the sequence is immutable, then a new sequence is created and assigned back to the target name.

seq_1 += seq_2

*=
• Adds seq to itself n times.
• Mutable sequences are updated in place.
• If the sequence is immutable, then a new sequence is created and assigned back to the target name.

seq *= n

