
Python Face Detection & OpenCV Examples
Mini-Guide

This mini-guide contains two practical OpenCV tutorials from the Real Python
web site. Learn more about OpenCV and other Python computer vision topics
at realpython.com/blog/categories/opencv/.

Face Recognition with Python, in Under 25 Lines of Code

In this post we’ll look at a surprisingly simple way to get started with
face recognition using Python and the open source library OpenCV.

Before you ask any questions in the comments section:

1. Do not skip over the blog post and try to run the code. You
must understand what the code does not only to run it properly
but to troubleshoot it as well.

2. Make sure to use OpenCV v2.
3. You need a working webcam for this script to work properly.
4. Review the other comments/questions as your questions have

probably already been addressed.

Thank you.

OpenCV

OpenCV is the most popular library for computer vision. Originally written in
C/C++, it now provides bindings for Python.

OpenCV uses machine learning algorithms to search for faces within a picture. For
something as complicated as a face, there isn’t one simple test that will tell you
if it found a face or not. Instead, there are thousands of small patterns/features
that must be matched. The algorithms break the task of identifying the face
into thousands of smaller, bite-sized tasks, each of which is easy to solve. These
tasks are also called classifiers.

For something like a face, you might have 6,000 or more classifiers, all of which
must match for a face to be detected (within error limits, of course). But therein
lies the problem: For face detection, the algorithm starts at the top left of
a picture and moves down across small blocks of data, looking at each block,
constantly asking, “Is this a face? . . . Is this a face? . . . Is this a face?” Since
there are 6,000 or more tests per block, you might have millions of calculations
to do, which will grind your computer to a halt.

1

https://realpython.com/blog/categories/opencv/
http://opencv.org/
http://en.wikipedia.org/wiki/Statistical_classification


To get around this, OpenCV uses cascades. What’s a cascade? The best answer
can be found from the dictionary: A waterfall or series of waterfalls

Like a series of waterfalls, the OpenCV cascade breaks the problem of detecting
faces into multiple stages. For each block, it does a very rough and quick test. If
that passes, it does a slightly more detailed test, and so on. The algorithm may
have 30-50 of these stages or cascades, and it will only detect a face if all stages
pass. The advantage is that the majority of the pictures will return negative
during the first few stages, which means the algorithm won’t waste time testing
all 6,000 features on it. Instead of taking hours, face detection can now be done
in real time.

Cascades in practice

Though the theory may sound complicated, in practice it is quite easy. The
cascades themselves are just a bunch of XML files that contain OpenCV data
used to detect objects. You initialize your code with the cascade you want, and
then it does the work for you.

Since face detection is such a common case, OpenCV comes with a number of
built-in cascades for detecting everything from faces to eyes to hands and legs.
There are even cascades for non-human things. For example, if you run a banana
shop and want to track people stealing bananas, this guy has built one for that!

Installing OpenCV

First, you need to find the correct setup file for your operating system

I found that installing OpenCV was the hardest part of the task. If you get strange
unexplainable errors, it could be due to library clashes, 32/64 bit differences, etc.
I found it easiest to just use a Linux virtual machine and install OpenCV from
scratch.

Once installed, you can test whether or not it works by firing up a Python session
and typing:

$ python
>>> import cv2
>>>

If you don’t get any errors, you can move on to the next part.

Understanding the code

Let’s break down the actual code, which you can download from the
repo. Grab the face_detect.py script, the abba.png pic, and the haarcas-
cade_frontalface_default.xml.

2

http://docs.opencv.org/modules/objdetect/doc/cascade_classification.html
http://dictionary.reference.com/browse/cascade
http://coding-robin.de/2013/07/22/train-your-own-opencv-haar-classifier.html
http://opencv.org/releases.html
https://github.com/shantnu/FaceDetect/


# Get user supplied values
imagePath = sys.argv[1]
cascPath = sys.argv[2]

You first pass in the image and cascade names as command-line arguments. We’ll
use the Abba image as well as the default cascade for detecting faces provided
by OpenCV.

# Create the haar cascade
faceCascade = cv2.CascadeClassifier(cascPath)

Now we create the cascade and initialize it with our face cascade. This loads the
face cascade into memory so it’s ready for use. Remember, the cascade is just
an XML file that contains the data to detect faces.

# Read the image
image = cv2.imread(imagePath)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

Here we read the image and convert it to grayscale. Many operations in OpenCv
are done in grayscale.

# Detect faces in the image
faces = faceCascade.detectMultiScale(

gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30),
flags = cv2.cv.CV_HAAR_SCALE_IMAGE

)

This function detects the actual face - and is the key part of our code, so let’s
go over the options.

1. The detectMultiScale function is a general function that detects objects.
Since we are calling it on the face cascade, that’s what it detects. The first
option is the grayscale image.

2. The second is the scaleFactor. Since some faces may be closer to the
camera, they would appear bigger than those faces in the back. The scale
factor compensates for this.

3. The detection algorithm uses a moving window to detect objects.
minNeighbors defines how many objects are detected near the current
one before it declares the face found. minSize, meanwhile, gives the size
of each window.

I took commonly used values for these fields. In real life, you
would experiment with different values for the window size, scale
factor, etc., until you find one that best works for you.

3

http://docs.opencv.org/modules/objdetect/doc/cascade_classification.html#cascadeclassifier-detectmultiscale


The function returns a list of rectangles where it believes it found a face. Next,
we will loop over where it thinks it found something.

print "Found {0} faces!".format(len(faces))

# Draw a rectangle around the faces
for (x, y, w, h) in faces:

cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2)

This function returns 4 values: the x and y location of the rectangle, and the
rectangle’s width and height (w , h).

We use these values to draw a rectangle using the built-in rectangle() function.

cv2.imshow("Faces found" ,image)
cv2.waitKey(0)

In the end, we display the image, and wait for the user to press a key.

Checking the results

Let’s test against the Abba photo:

$ python face_detect.py abba.png haarcascade_frontalface_default.xml

That worked. How about another photo:

That . . . is not a face. Let’s try again. I changed the parameters and found that
setting the scaleFactor to 1.2 got rid of the wrong face.

What happened?

Well, the first photo was taken fairly close up with a high quality camera. The
second one seems to have been taken from afar and possibly from a mobile phone.
This is why the scaleFactor had to be modified. As I said, you’ll have to setup
the algorithm on a case by case basis to avoid false positives.

Be warned though that since this is based on machine learning, the results will
never be 100% accurate. You will get good enough results in most cases, but
occasionally the algorithm will identify incorrect objects as faces.

The final code can be found here.

Extending to a webcam

So what if you want to use a webcam? OpenCV grabs each frame from the
webcam and you can then detect faces by processing each frame. You will need
a powerful computer, though my five year old laptop seems to cope fine, as long
as I don’t dance around too much.

4

https://github.com/shantnu/FaceDetect


Figure 1:

5



Figure 2:

6



Figure 3:

7



UPDATED The next blog post is live: Face Detection in Python
Using a Webcam. Check it out!

Face Detection in Python Using a Webcam

This tutorial is a follow-up to Face Recognition in Python, so make sure
you’ve gone through that first post.

As mentioned in the first post, it’s quite easy to move from detecting
faces in images to detecting them in video via a webcam - which is
exactly what we will detail in this post.

Before you ask any questions in the comments section:

1. Do not skip over the blog post and try to run the code. You
must understand what the code does not only to run it properly
but to troubleshoot it as well.

2. Make sure to use OpenCV v2.
3. You need a working webcam for this script to work properly.
4. Review the other comments/questions as your questions have

probably already been addressed.

Thank you.

Pre-requisites

1. OpenCV installed (see the previous blog post for details)
2. A working webcam

The Code

Let’s dive straight into the code, taken from this repository.

import cv2
import sys

cascPath = sys.argv[1]
faceCascade = cv2.CascadeClassifier(cascPath)

video_capture = cv2.VideoCapture(0)

while True:
# Capture frame-by-frame
ret, frame = video_capture.read()

8

https://realpython.com/blog/python/face-detection-in-python-using-a-webcam/
https://realpython.com/blog/python/face-detection-in-python-using-a-webcam/
https://realpython.com/blog/python/face-recognition-with-python/
https://github.com/shantnu/Webcam-Face-Detect


gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30),
flags=cv2.cv.CV_HAAR_SCALE_IMAGE

)

# Draw a rectangle around the faces
for (x, y, w, h) in faces:

cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)

# Display the resulting frame
cv2.imshow('Video', frame)

if cv2.waitKey(1) & 0xFF == ord('q'):
break

# When everything is done, release the capture
video_capture.release()
cv2.destroyAllWindows()

Now let’s break it down. . .

import cv2
import sys

cascPath = sys.argv[1]
faceCascade = cv2.CascadeClassifier(cascPath)

This should be familiar to you. We are creating a face cascade, as we did in the
image example.

video_capture = cv2.VideoCapture(0)

This line sets the video source to the default webcam, which OpenCV can easily
capture.

NOTE: You can also provide a filename here, and Python will read
in the video file. However, you need to have ffmpeg installed for that
since OpenCV itself cannot decode compressed video. Ffmpeg acts
as the front end for OpenCV, and, ideally, it should be compiled
directly into OpenCV. This is not easy to do, especially on Windows.

while True:
# Capture frame-by-frame

9

https://www.ffmpeg.org/


ret, frame = video_capture.read()

Here, we capture the video. The read() function reads one frame from the video
source, which in this example is the webcam. This returns:

1. The actual video frame read (one frame on each loop)
2. A return code

The return code tells us if we have run out of frames, which will happen if we
are reading from a file. This doesn’t matter when reading from the webcam,
since we can record forever, so we will ignore it.

# Capture frame-by-frame
ret, frame = video_capture.read()

gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30),
flags=cv2.cv.CV_HAAR_SCALE_IMAGE

)

# Draw a rectangle around the faces
for (x, y, w, h) in faces:

cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)

# Display the resulting frame
cv2.imshow('Video', frame)

Again, this code should be familiar. We are merely searching for the face in our
captured frame.

if cv2.waitKey(1) & 0xFF == ord('q'):
break

We wait for the ‘q’ key to be pressed. If it is, we exit the script.

# When everything is done, release the capture
video_capture.release()
cv2.destroyAllWindows()

Here, we are just cleaning up.

Test!

Click here to watch the example video

10

https://vimeo.com/100839478


So, that’s me with my driver’s license in my hand. And you can see that the
algorithm tracks both the real me and the photo me. Note that when I move
slowly, the algorithm can keep up. When I move my hand up to my face a bit
faster, though, it gets confused and mistakes my wrist for a face.

Like I said in the last post, machine learning based algorithms are rarely 100%
accurate. We aren’t at the stage where Robocop driving his motorcycle at 100
mph can track criminals using low quality CCTV cameras. . . yet.

The code searches for the face frame by frame, so it will take a fair amount of
processing power. For example, on my five year old laptop, it took almost 90%
of the CPU.

Next Steps

Okay, so you know how to detect faces. But what if you want to detect your
own object, like your car or your TV or your favorite toy?

OpenCV allows you to create your own cascades, but the process isn’t well
documented. Here is a blog post that shows you how to train your own cascade
to detect a banana.

If you want to take it one step further and recognize individual faces - perhaps to
detect and recognize your face amongst many strangers - the task is surprisingly
difficult. This is mainly due to the large amount of image pre-processing involved.
But if you are willing to tackle the challenge, it is possible by using machine
learning algorithms as described here.

Want to know more?

This will be covered in much greater detail along with a number of computational
science and machine learning topics and more in my upcoming course. The
course is based on a highly successful Kickstarter.

The Kickstarter is over, but you can still order the course at Python for Engineers.
Visit to find out more.

Also, post links to your videos below to get direct feedback from me. Comment
if you have questions.

Oh—and next time we’ll be tackling some motion detection. Stay tuned!

11

http://coding-robin.de/2013/07/22/train-your-own-opencv-haar-classifier.html
http://scikit-learn.sourceforge.net/0.6/auto_examples/applications/plot_face_recognition.html
https://www.kickstarter.com/projects/513736598/python-for-science-and-engineering
http://pythonforengineers.com/

	Python Face Detection & OpenCV Examples Mini-Guide
	Face Recognition with Python, in Under 25 Lines of Code
	OpenCV
	Installing OpenCV
	Understanding the code
	Checking the results
	Extending to a webcam

	Face Detection in Python Using a Webcam
	Pre-requisites
	The Code
	Test!
	Next Steps
	Want to know more?



