

CPython Internals: Your Guide to thePython 3 Interpreter
Anthony Shaw

CPython Internals: Your Guide to the Python 3 Interpreter
Anthony Shaw
Copyright © Real Python (realpython.com), 2012–2021
For online information and ordering of this and other books by RealPython, please visit realpython.com. For more information, pleasecontact us at info@realpython.com.
ISBN: 9781775093343 (paperback)
ISBN: 9781775093350 (electronic)
Cover design by Aldren Santos
Additional editing and proofreading by Jacob Schmitt
“Python” and the Python logos are trademarks or registered trade-marks of the Python Software Foundation, used by Real Python withpermission from the Foundation.
Thank you for downloading this ebook. This ebook is licensed foryour personal enjoyment only. This ebook may not be re-sold orgiven away to other people. If you would like to share this bookwith another person, please purchase an additional copy for eachrecipient. If you’re reading this book and did not purchase it,or it was not purchased for your use only, then please return torealpython.com/cpython-internals and purchase your own copy.Thank you for respecting the hard work behind this book.

https://realpython.com/
https://realpython.com/
https://realpython.com/cpython-internals

This is a sample from “CPython Internals: YourGuide to the Python 3 Interpreter”
With this book you’ll cover the critical concepts behind the internals ofCPython and how they work with visual explanations as you go along.
You’ll understand the concepts, ideas, and technicalities of CPython inan approachable and hands-on fashion. At the end of the book you’llbe able to:
• Write custom extensions for Python, written in the C program-ming language (the book includes an “Intro to C for Pythonistas”chapter)
• Use your deep knowledge of the CPython interpreter to improveyour own Python applications
• Contribute to the CPython project and start your journey towardsbecoming a Python Core Developer

If you enjoyed the sample chapters you can purchase a fullversion of the book at realpython.com/cpython-internals

https://realpython.com/cpython-internals

What Readers Say About CPython Internals: Your Guide tothe Python 3 Interpreter

“It’s the book that I wish existed years ago when I started my Pythonjourney. After reading this book your skills will grow and you will beable solve even more complex problems that can improve our world.”
— Carol Willing, CPython core developer and member of theCPython Steering Council

“The ‘Parallelism and Concurrency’ chapter is one of my favorites. Ihad been looking to get an in depth understanding around this topicand I found your book extremely helpful.
Of course, after going over that chapter I couldn’t resist the rest. I ameagerly looking forward to have my own printed copy once it’s out!
I had gone through your ‘Guide to the CPython Source Code’ articlepreviously, which got me interested in finding out more about the in-ternals.
There are a ton of books on Python which teach the language, but Ihaven’t really come across anything that would go about explainingthe internals to those curious minded.
And while I teach Python to my daughter currently, I have this bookadded in her must-read list. She’s currently studying information sys-tems at Georgia State University.”
—Milan Patel, vice president at (a major investment bank)

“What impresses me the most about Anthony’s book is how it puts allthe steps for making changes to the CPython code base in an easy-to-follow sequence. It really feels like a ‘missing manual’ of sorts.
Diving into the C underpinnings of Python was a lot of fun and itcleared up some longstanding questions marks for me. I found thechapter about CPython’s memory allocator especially enlightening.
CPython Internals is a great (and unique) resource for anybody look-ing to take their knowledge of Python to a deeper level.”
— Dan Bader, author of Python Tricks and editor in chief atReal Python

“This book helped me to better understand how lexing and parsingworks in Python. It’s my recommended source if you want to under-stand it.”
— Florian Dahlitz, Pythonista

“A comprehensive walkthrough of the Python internals, a topic whichsurprisingly has almost no good resource, in an easy-to-understandmanner for both beginners as well as advanced Python users.”
— Abhishek Sharma, data scientist

About the Author
Anthony Shaw is an avid Pythonista and Fellow of the Python Soft-ware Foundation.
Anthony has been programming since the age of 12 and found a lovefor Python while trapped inside a hotel in Seattle, Washington, 15years later. After ditching the other languages he’d learned, Anthonyhas been researching, writing about, and creating courses for Pythonever since.
Anthony also contributes to small and large Open Source projects, in-cluding CPython, as well as being a member of the Apache SoftwareFoundation.
Anthony’s passion lies in understanding complex systems, then sim-plifying them, and teaching them to people.
About the Review Team
Jim Anderson has been programming for a long time in a varietyof languages. He has worked on embedded systems, built distributedbuild systems, done off-shore vendor management, and sat in many,many meetings.
Joanna Jablonski is the executive editor of Real Python. She likesnatural languages just as much as she likes programming languages.Her love for puzzles, patterns, and pesky little details led her to followa career in translation. It was only a matter of time before she wouldfall in love with a new language: Python! She joined Real Python in2018 and has been helping Pythonistas level up ever since.

Contents
Contents 7
Foreword 12
Introduction 14How to Use This Book . 15Bonus Material and Learning Resources 17
Getting the CPython Source Code 21What’s in the Source Code? 22
Setting Up Your Development Environment 24IDE or Editor? . 24Setting Up Visual Studio 26Setting Up Visual Studio Code 28Setting Up JetBrains CLion 33Setting up Vim . 37Conclusion . 41

7

Contents
Compiling CPython 43Compiling CPython on macOS 44Compiling CPython on Linux 46Installing a Custom Version 48A Quick Primer on Make 48CPython’s Make Targets 50Compiling CPython on Windows 53Profile-Guided Optimization 59Conclusion . 61
The Python Language and Grammar 62Why CPython Is Written in C and Not Python 63The Python Language Specification 65The Parser Generator . 70Regenerating Grammar 70Conclusion . 75
Conрguration and Input 77Configuration State . 80Build Configuration . 84Building a Module From Input 85Conclusion . 90
Lexing and ParsingWith Syntax Trees 92Concrete Syntax Tree Generation 93The CPython Parser-Tokenizer 97Abstract Syntax Trees . 102Important Terms to Remember 112Example: Adding an Almost-Equal Comparison Operator . 112Conclusion . 118

8

Contents
The Compiler 119Related Source Files . 120Important Terms . 121Instantiating a Compiler 122Future Flags and Compiler Flags 123Symbol Tables . 124Core Compilation Process 131Assembly . 138Creating a Code Object 142Using Instaviz to Show a Code Object 143Example: Implementing the Almost-Equal Operator 145Conclusion . 151
The Evaluation Loop 152Related Source Files . 153Important Terms . 153Constructing Thread State 154Constructing Frame Objects 155Frame Execution . 163The Value Stack . 166Example: Adding an Item to a List 172Conclusion . 176
Memory Management 178Memory Allocation in C 179Design of the Python Memory Management System 182The CPython Memory Allocator 184The Object and PyMem Memory Allocation Domains . . . 194The Raw Memory Allocation Domain 197Custom Domain Allocators 198Custom Memory Allocation Sanitizers 199The PyArena Memory Arena 202Reference Counting . 203Garbage Collection . 210Conclusion . 220

9

Contents
Parallelism and Concurrency 222Models of Parallelism and Concurrency 224The Structure of a Process 224Multiprocess Parallelism 227Multithreading . 251Asynchronous Programming 266Generators . 266Coroutines . 273Asynchronous Generators 279Subinterpreters . 280Conclusion . 284
Objects and Types 286Examples in This Chapter 287Built-in Types . 288Object and Variable Object Types 289The type Type . 290The bool and long Types 294The Unicode String Type 299The Dictionary Type . 310Conclusion . 316
The Standard Library 317Python Modules . 317Python and C Modules 319
The Test Suite 323Running the Test Suite on Windows 323Running the Test Suite on Linux or macOS 324Test Flags . 325Running Specific Tests 325Testing Modules . 327Test Utilities . 328Conclusion . 329

10

Contents
Debugging 330Using the Crash Handler 331Compiling Debug Support 331Using LLDB for macOS 332Using GDB . 336Using Visual Studio Debugger 339Using CLion Debugger 341Conclusion . 346
Benchmarking, Proрling, and Tracing 347Using timeit for Microbenchmarks 348Using the Python Benchmark Suite for Runtime Benchmarks 350Profiling Python Code with cProfile 356Profiling C Code with DTrace 359Conclusion . 364
Next Steps 365Writing C Extensions for CPython 365Improving Your Python Applications 366Contributing to the CPython Project 367Keep Learning . 370
Appendix: Introduction to C for Python Programmers 372The C Preprocessor . 372Basic C Syntax . 376Conclusion . 383

11

Foreword
A programming language created by a community fos-ters happiness in its users around the world.
— Guido van Rossum, “King’s Day Speech”

I love building tools that help us learn, empower us to create, andmove us to share knowledge and ideas with others. I feel humbled,thankful, and proud when I hear how these tools and Python arehelping you to solve real-world problems, like climate change orAlzheimer’s.
Throughmy four-decade love of programming and problem solving, Ihave spent time learning, writing a lot of code, and sharing my ideaswith others. I’ve seen profound changes in technology as the worldhas progressed from mainframes to cell phone service to the wide-ranging wonders of theWeb and cloud computing. All these technolo-gies, including Python, have one thing in common.
At onemoment, these successful innovations were nothingmore thanan idea. The creators, like Guido, had to take risks and leaps of faithto move forward. Dedication, learning through trial and error, andworking together through many failures built a solid foundation forsuccess and growth.
CPython Internalswill take you on a journey to explore the wildly suc-cessful programming language Python. The book serves as a guideto how CPython works under the hood. It will give you a glimpse ofhow the core developers crafted the language.

12

http://neopythonic.blogspot.com/2016/04/

Contents
Python’s strengths include its readability and the welcoming commu-nity dedicated to education. Anthony embraces these strengths whenexplaining CPython, encouraging you to read the source and sharingthe building blocks of the language with you.
Whydo Iwant to shareAnthony’sCPython Internalswith you? It’s thebook that I wish existed years ago when I started my Python journey.More importantly, I believewe, asmembers of the Python community,have a unique opportunity to put our expertise to work to help solvethe complex real-world problems facing us.
I’m confident that after reading this book, your skills will grow, andyou will be able solve even more complex problems and improve ourworld.
It’s my hope that Anthony motivates you to learn more about Python,inspires you to build innovative things, and gives you confidence toshare your creations with the world.

Now is better than never.
— Tim Peters, The Zen of Python

Let’s follow Tim’s wisdom and get started now.
Warmly,
— Carol Willing, CPython core developer and member of theCPython Steering Council

13

Introduction
Are there certain parts of Python that just seem like magic, like howfinding an item is somuch faster with dictionaries than looping over alist? How does a generator remember the state of variables each timeit yields a value? Why don’t you ever have to allocatememory like youdo with other languages?
The answer is that CPython, themost popular Python runtime, is writ-ten in human-readable C and Python code.
CPython abstracts the complexities of the underlying C platform andyour operating system. It makes threading straightforward and cross-platform. It takes the pain of memory management in C and makes itsimple.
CPython gives the developerwriting Python code the platform towritescalable and performant applications. At some stage in your progres-sion as a Python developer, you’ll need to understand how CPythonworks. These abstractions aren’t perfect, and they’re leaky.
Once you understand how CPython works, you can fully leverage itspower and optimize your applications. This book will explain the con-cepts, ideas, and technicalities of CPython.
In this book, you’ll cover the major concepts behind the internals ofCPython and learn how to:
• Read and navigate the source code
• Compile CPython from source code

14

How to Use This Book
• Make changes to the Python syntax and compile them into yourversion of CPython
• Navigate and comprehend the inner workings of features like lists,dictionaries, and generators
• Master CPython’s memory management capabilities
• Scale your Python code with parallelism and concurrency
• Modify the core types with new functionality
• Run the test suite
• Profile and benchmark the performance of your Python code andruntime
• Debug C and Python code like a professional
• Modify or upgrade components of the CPython library to con-tribute them to future versions

Take your time with each chapter and try out the demos and interac-tive elements. You’ll feel a sense of achievement as you grasp the coreconcepts that will make you a better Python programmer.

How to Use This Book
This book is all about learning by doing, so be sure to set up your IDEearly on by reading the instructions, downloading the code, and writ-ing the examples.
For the best results, we recommend that you avoid copying and past-ing the code examples. The examples in this book took many itera-tions to get right, and they may also contain bugs.
Making mistakes and learning how to fix them is part of the learningprocess. You might discover better ways to implement the examples,try changing them, and see what effect it has.
With enough practice, you’ll master thismaterial—and have fun alongthe way!

15

How to Use This Book
How skilled in Python do I need to be to use thisbook?
This book is aimed at intermediate to advanced Python developers.Every effort has been taken to show code examples, but some inter-mediate Python techniques will be used throughout.
Do I need to know C to use this book?
You don’t need to be proficient in C to use this book. If you’re newto C, then check out the appendix, “Introduction to C for Python Pro-grammers,” for a quick introduction.
How long will it take to рnish this book?
We don’t recommend rushing through this book. Try reading onechapter at a time, trying the examples after each chapter and explor-ing the code simultaneously. Once you’ve finished the book, it willmake a great reference guide for you to come back to in time.
Won’t the content in this book be out of datereally quickly?
Python has been around for more than thirty years. Some parts of theCPython code haven’t been touched since they were originally written.Many of the principles in this book have been the same for ten ormoreyears.
In fact, while writing this book, we discoveredmany lines of code thatwere written by Guido van Rossum (the author of Python) and leftuntouched since version 1.
Some of the concepts in this book are brand-new. Some are even ex-perimental. While writing this book, we came across issues in thesource code and bugs in CPython that were later fixed or improved.That’s part of the wonder of CPython as a flourishing open sourceproject.

16

https://github.com/python/cpython/pulls?q=is%3Apr+author%3Atonybaloney+is%3Amerged+

Bonus Material and Learning Resources
The skills you’ll learn in this book will help you read and understandcurrent and future versions of CPython. Change is constant, and ex-pertise is something you can develop along the way.

Bonus Material and Learning Resources
This book comes with a number of free bonus resources that you canaccess at realpython.com/cpython-internals/resources/. On this webpage you can also find an errata list with corrections maintained bythe Real Python team.
Code Samples
The examples and sample configurations throughout this book willbe marked with a header denoting them as part of the cpython-book-

samples folder:
cpython-book-samples 01 example.py

import this

You can download the code samples at realpython.com/cpython-internals/resources/.
Code Licenses
The example Python scripts associated with this book are licensed un-der a Creative Commons Public Domain (CC0) License. This meansyou’re welcome to use any portion of the code for any purpose in yourown programs.
CPython is licensed under the Python Software Foundation 2.0license. Snippets and samples of CPython source code used in thisbook are done so under the terms of the PSF 2.0 license.

17

https://realpython.com/cpython-internals/resources/
https://realpython.com/cpython-internals/resources/
https://realpython.com/cpython-internals/resources/
https://creativecommons.org/publicdomain/zero/1.0/
https://github.com/python/cpython/blob/master/LICENSE
https://github.com/python/cpython/blob/master/LICENSE

Bonus Material and Learning Resources
Note
The code in this book has been tested with Python 3.9 on Win-dows 10, macOS 10.15, and Linux.

Formatting Conventions
Code blocks are used to present example code:
This is Python code:

print("Hello, World!")

Operating system–agnostic commands follow the Unix-style format:
$ # This is a terminal command:

$ python hello-world.py

(The $ is not part of the command.)
Windows-specific commands have the Windows command-line for-mat:
> python hello-world.py

(The > is not part of the command.)
Command-line syntax follows this format:
• Unbracketed text must be typed as it is shown.
• <Text inside angle brackets> indicates a variable forwhich youmustsupply a value. For example, youwould replace <filename>with thename of a specific file.
• [Text inside square brackets] indicates an optional argument thatyou may supply.

Bold text denotes a new or important term.

18

Bonus Material and Learning Resources
Notes and alert boxes appear as follows:

Note
This is a note filled in with placeholder text. The quick brownfox jumps over the lazy dog. The quick brown Python slithersover the lazy hog.
Important
This is an alert also filled in with placeholder text. The quickbrown fox jumps over the lazy dog. The quick brown Pythonslithers over the lazy hog.

Any references to a file within the CPython source code will be shownlike this:
path to file.py

Shortcuts or menu commands will be given in sequence, like this:
File Other Option

Keyboard commands and shortcuts will be given for both macOS andWindows:
Ctrl + Space

Feedback and Errata
We welcome ideas, suggestions, feedback, and the occasional rant.Did you find a topic confusing? Did you find an error in the text orcode? Did we leave out a topic you would love to know more about?
We’re always looking to improve our teaching materials. Whateverthe reason, please send in your feedback at the link below:
realpython.com/cpython-internals/feedback

19

https://realpython.com/cpython-internals/feedback

Bonus Material and Learning Resources
About Real Python
At Real Python, you’ll learn real-world programming skills from acommunity of professional Pythonistas from all around the world.
The realpython.com website launched in 2012 and currently helpsmore than three million Python developers each month with books,programming tutorials, and other in-depth learning resources.
Here’s where you can find Real Python on the Web:
• realpython.com
• @realpython on Twitter
• The Real Python Newsletter
• The Real Python Podcast

20

https://realpython.com
https://realpython.com
https://realpython.com
https://twitter.com/realpython
https://realpython.com/newsletter
https://realpython.com/podcast

Getting the CPython SourceCode
When you type python at the console or install a Python distributionfrom Python.org, you’re running CPython. CPython is one of manyPython implementations maintained and written by different teamsof developers. Some alternatives you may have heard of are PyPy,Cython, and Jython.
The unique thing about CPython is that it contains both a runtimeand the shared language specification that all other Python implemen-tations use. CPython is the official, or reference, implementation ofPython.
ThePython language speciрcation is the document that describesthe Python language. For example, it says that assert is a reservedkeyword and that [] is used for indexing, slicing, and creating emptylists.
Think about the features you expect from the Python distribution:
• When you type python without a file or module, it gives an interac-tive prompt (REPL).
• You can import built-in modules like json, csv, and collectionsfrom the standard library.
• You can install packages from the Internet using pip.
• You can test your applications using the built-in unittest library.

21

https://www.python.org
https://www.python.org/download/alternatives/
https://pypy.org/
https://cython.org/
https://www.jython.org/

What’s in the Source Code?
These are all part of the CPython distribution. It includes a lot morethan just a compiler.
In this book, you’ll explore the different parts of the CPython distribu-tion:
• The language specification
• The compiler
• The standard library modules
• The core types
• The test suite

What’s in the Source Code?
The CPython source distribution comes with a whole range of tools,libraries, and components that you’ll explore in this book.

Note
This book targets version 3.9 of the CPython source code.

To download a copy of the CPython source code, you can use git topull the latest version:
$ git clone --branch 3.9 https://github.com/python/cpython

$ cd cpython

The examples in this book are based on Python version 3.9.
Important
Switching to the 3.9 branch is an important step. The masterbranch changes on an hourly basis. Many of the examples andexercises in this book are unlikely to work on master.

22

https://github.com/python/cpython/tree/3.9
https://git-scm.com/

What’s in the Source Code?
Note
If you don’t have Git available, then you can install it fromgit-scm.com. Alternatively, you can download a ZIP file of theCPython source directly from the GitHub website.
If you download the source as a ZIP file, then it won’t containany history, tags, or branches.

Inside the newly downloaded cpython directory, you’ll find the follow-ing subdirectories:

cpython/

Doc

Grammar

Include

Lib

Mac

Misc

Modules

Objects

Parser

PC

PCBuild

Programs

Python

Tools

Source for the documentation

The computer-readable language definition

The C header files

Standard library modules written in Python

macOS support files

Miscellaneous files

Standard library modules written in C

Core types and the object model

The Python parser source code

Windows build support files for older versions of Windows

Windows build support files

Source code for the python executable and other binaries

The CPython interpreter source code

Standalone tools useful for building or extending CPython

m4 Custom scripts to automate configuration of the makefile

Next, you’ll set up your development environment.

23

https://git-scm.com/
https://github.com/python/cpython/archive/3.9.zip

Setting Up YourDevelopment Environment
Throughout this book, you’ll be working with both C and Python code.It’s essential that you have your development environment configuredto support both languages.
The CPython source code is about 65 percent Python (of which thetests are a significant part) and 24 percent C. The remainder is a mixof other languages.

IDE or Editor?
If you haven’t yet decided which development environment to use,then there’s one decision to make first: whether to use an integrateddevelopment environment (IDE) or a code editor.
• An IDE targets a specific language and toolchain. Most IDEs haveintegrated testing, syntax checking, version control, and compila-tion.
• A code editor enables you to edit code files, regardless of lan-guage. Most code editors are simple text editors with syntax high-lighting.

Because of their full-featured nature, IDEs often consumemore hard-ware resources. So if you have limited RAM (less than 8 GB), then acode editor is recommended.

24

IDE or Editor?
IDEs also take longer to start up. If youwant to edit a file quickly, thena code editor is a better choice.
There are hundreds of editors and IDEs available for free or at a cost.Here are some commonly used IDEs and editors suitable for CPythondevelopment:
Application Style Supports
Microsoft Visual Studio Code Editor Windows, macOS,and LinuxAtom Editor Windows, macOS,and LinuxSublime Text Editor Windows, macOS,and LinuxVim Editor Windows, macOS,and LinuxEmacs Editor Windows, macOS,and LinuxMicrosoft Visual Studio IDE (C, Python,and others) Windows
PyCharm by JetBrains IDE (Python andothers) Windows, macOS,and LinuxCLion by JetBrains IDE (C andothers) Windows, macOS,and Linux

A version of Microsoft Visual Studio is also available for Mac, but itdoesn’t support Python Tools for Visual Studio or C compilation.
In the sections below, you’ll explore the setup steps for the followingeditors and IDEs:
• Microsoft Visual Studio
• Microsoft Visual Studio Code
• JetBrains CLion
• Vim

Skip ahead to the section for your chosen application, or read all ofthem if you want to compare.
25

https://code.visualstudio.com/
https://atom.io/
https://www.sublimetext.com/
https://www.vim.org/
https://www.gnu.org/s/emacs/
https://visualstudio.microsoft.com/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/clion/
https://visualstudio.microsoft.com/vs/mac/

Setting Up Visual Studio
Setting Up Visual Studio
The newest version of Visual Studio, Visual Studio 2019, has built-insupport for Python and the C source code onWindows. I recommendusing it for the examples and exercises in this book. If you alreadyhave Visual Studio 2017 installed, then that would also work.

Note
None of the paid features of Visual Studio are required for com-piling CPython or completing this book. You can use the freeCommunity edition.
However, the profile-guided optimization build profile requiresthe Professional edition or higher.

Visual Studio is available for free fromMicrosoft’s Visual Studio web-site.
Once you’ve downloaded the Visual Studio installer, you’ll be asked toselect which components youwant to install. You’ll need the followingcomponents for this book:
• The Python development workload
• The optional Python native development tools
• Python 3 64-bit (3.7.2)

You can deselect Python 3 64-bit (3.7.2) if you already have Python3.7 installed. You can also deselect any other optional features if youwant to conserve disk space.
The installer will then download and install all the required compo-nents. The installation can take up to an hour, so you may want toread on and come back to this section when it finishes.
Once the installation is complete, click Launch to start Visual Studio.You’ll be prompted to sign in. If you have a Microsoft account, youcan either log in or skip that step.

26

https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/

Setting Up Visual Studio
Next, you’ll be prompted to open a project. You can cloneCPython’s Git repository directly from Visual Studio by choosing the
Clone or check out code option.
For the repository location, enter https://github.com/python/cpython,choose your local path, and select Clone .
Visual Studio will then download a copy of CPython from GitHub us-ing the version of Git bundled with Visual Studio. This step also savesyou the hassle of having to install Git onWindows. The downloadmaytake up to ten minutes.

Important
Visual Studio will automatically checkout the master branch.Before compiling, make sure you change to the 3.9 branch fromwithin the Team Explorer window. Switching to the 3.9 branchis an important step. The master branch changes on an hourlybasis. Many of the examples and exercises in this book are un-likely to work on master.

Once the project has downloaded, you need to point Visual Studio tothe PCBuild pcbuild.sln solution file by clicking Solutions and Projects
pcbuild.sln :

27

Setting Up Visual Studio Code

Now that you have Visual Studio configured and the source codedownloaded, you can compile CPython on Windows by following thesteps in the next chapter.

Setting Up Visual Studio Code
Microsoft Visual Studio Code is an extensible code editor with an on-line marketplace of plugins.
It makes an excellent choice for working with CPython as it supportsboth C and Python with an integrated Git interface.
Installing
Visual Studio Code, sometimes known as VS Code, is available with asimple installer at code.visualstudio.com.
Out of the box, VS Code has the necessary code editing capabilities,but it becomes more powerful once you install extensions.

28

https://code.visualstudio.com/

Setting Up Visual Studio Code
You can access the Extensions panel by selecting View Extensions
from the top menu:

Inside the Extensions panel, you can search for extensions by nameor by their unique identifier, such as ms-vscode.cpptools. In some casesthere are many plugins with similar names, so use the unique identi-fier to be sure you’re installing the right one.
Recommended Extensions for This Book
There are several useful extensions for working with CPython:
• C/C++ (ms-vscode.cpptools) provides support for C/C++, includ-ing IntelliSense, debugging, and code highlighting.
• Python (ms-python.python) provides rich Python support for edit-ing, debugging, and reading Python code.
• reStructuredText (lextudio.restructuredtext) provides rich sup-port for reStructuredText, the format used in the CPython docu-mentation.

29

https://github.com/Microsoft/vscode-cpptools
https://github.com/Microsoft/vscode-python
https://github.com/vscode-restructuredtext/vscode-restructuredtext

Setting Up Visual Studio Code
• Task Explorer (spmeesseman.vscode-taskexplorer) adds a Task Ex-plorer panel inside the Explorer tab, making it easier to launch

make tasks.
After you install these extensions, you’ll need to reload the editor.
Many of the tasks in this book require a command line. You can add anintegrated terminal into VS Code by selecting Terminal New Terminal .A terminal will appear below the code editor:

Using Advanced Code Navigation and Expansion
With the plugins installed, you can perform some advanced code nav-igation.
For example, if you right-click a function call in a C file and select
Go to References , then VS Code will find other references to that func-tion in the codebase:

30

https://github.com/spmeesseman/vscode-taskexplorer

Setting Up Visual Studio Code
Go to References is very useful for discovering the proper calling formfor a function.
If you click on or hover over a C macro, then the editor will expandthat macro to the compiled code:

To jump to the definition of a function, hover over any call to it andpress Cmd + Click on macOS or Ctrl + Click on Linux and Windows.
Conрguring the Task and Launch Files
VS Code uses a .vscode folder in the workspace directory. If this folderdoesn’t exist, create it now. Inside this folder, you can create the fol-lowing files:
• tasks.json for shortcuts to commands that execute your project
• launch.json to configure the debugger (see the chapter “Debug-ging”)
• Other plugin-specific files

Create a tasks.json file inside the .vscode directory if one doesn’t al-ready exist. This tasks.json file will get you started:
cpython-book-samples 11 tasks.json

31

Setting Up Visual Studio Code
{

"version": "2.0.0",

"tasks": [

{

"label": "build",

"type": "shell",

"group": {

"kind": "build",

"isDefault": true

},

"windows": {

"command": "PCBuild/build.bat",

"args": ["-p", "x64", "-c", "Debug"]

},

"linux": {

"command": "make -j2 -s"

},

"osx": {

"command": "make -j2 -s"

}

}

]

}

Using the Task Explorer plugin, you’ll see a list of your configuredtasks inside the vscode group:

32

Setting Up JetBrains CLion
In the next chapter, you’ll learnmore about the build process for com-piling CPython.

Setting Up JetBrains CLion
JetBrains makes an IDE for Python called PyCharm as well as an IDEfor C/C++ development called CLion.
CPython has both C andPython code. You can’t install C/C++ supportinto PyCharm, but CLion comes bundled with Python support.

Important
Makefile support is available only in CLion versions 2020.2 andabove.
Important
This step requires that you have both generated a makefile byrunning configure and compiled CPython.
Please read the chapter “Compiling CPython” for your operat-ing system and then return to this chapter.

After compiling CPython for the first time, you’ll have a makefile inthe root of the source directory.
Open CLion and choose Open or Import from the welcome screen.Navigate to the source directory, select the makefile, and press Open :

33

Setting Up JetBrains CLion

CLion will ask whether you want to open the directory or importthe makefile as a new project. Select Open as Project to import as aproject.
CLion will ask which make target to run before importing. Leave thedefault option, clean, and continue:

Next, check that you can build the CPython executable from CLion.From the top menu, select Build Build Project .
In the status bar, you should see a progress indicator for the projectbuild:

34

Setting Up JetBrains CLion
Once this task is complete, you can target the compiled binary as arun/debug configuration.
Select Run Edit Configurations to open the Run/Debug Configura-tions window. Inside this window, select + Makefile Application andcomplete the following steps:
1. Set the Name to cpython.
2. Leave the build target as all.
3. For the executable, select the dropdown and choose Select Other ,then find the compiled CPython binary in the source directory. Itwill be called python or python.exe.
4. Enter any program arguments you wish to always have, such as -X

dev to enable development mode. These flags are covered later in“Setting Runtime Configuration With the Command Line.”
5. Set the working directory to the CLion macro $ProjectFileDir$:

Click OK to add this configuration. You can repeat this step as manytimes as you like for any of the CPython make targets. See the section
35

Setting Up JetBrains CLion
“CPython’s Make Targets” in the chapter “Compiling CPython” for afull reference.
The cpython build configuration will now be available in the top rightof the CLion window:

To test it out, click the arrow icon or select Run Run ’cpython’ fromthe top menu. You should now see the REPL at the bottom of theCLion window:

Great! Now you can make changes and quickly try them out by click-ing Build and Run . If you put any breakpoints in the C code, thenmake sure you choose Debug instead of Run .

36

Setting up Vim
Within the code editor, the shortcuts Cmd + Click onmacOS and Ctrl
+ Click on Windows and Linux will bring up in-editor navigation fea-tures:

Setting up Vim
Vim is a powerful console-based text editor. For fast development,use Vim with your hands resting on the keyboard home keys. Theshortcuts and commands are within reach.

Note
On most Linux distributions and within the macOS Terminal,
vi is an alias for vim. We’ll use the vim command in this book,but if you have the alias, then vi will also work.

Out of the box, Vim has only basic functionality, littlemore than a texteditor like Notepad. With some configuration and extensions, how-ever, Vim can become a powerful tool for both Python and C editing.
Vim’s extensions are in various locations, including GitHub. To easethe configuration and installation of plugins from GitHub, you caninstall a plugin manager like Vundle.
To install Vundle, run this command at the terminal:

37

https://github.com/VundleVim/Vundle.vim

Setting up Vim
$ git clone https://github.com/VundleVim/Vundle.vim.git \

~/.vim/bundle/Vundle.vim

Once Vundle is downloaded, you need to configure Vim to load theVundle engine.
You’ll install two plugins:
1. Fugitive: A status bar for Git with shortcuts for many Git tasks
2. Tagbar: A pane for making it easier to jump to functions, meth-ods, and classes
To install these plugins, first change the contents of your Vim config-uration file (normally HOME .vimrc) to include the following lines:
cpython-book-samples 11 .vimrc

syntax on

set nocompatible " be iMproved, required

filetype off " required

" set the runtime path to include Vundle and initialize

set rtp+=~/.vim/bundle/Vundle.vim

call vundle#begin()

" let Vundle manage Vundle, required

Plugin 'VundleVim/Vundle.vim'

" The following are examples of different formats supported.

" Keep Plugin commands between vundle#begin/end.

" plugin on GitHub repo

Plugin 'tpope/vim-fugitive'

Plugin 'majutsushi/tagbar'

" All of your Plugins must be added before this line

call vundle#end() " required

filetype plugin indent on " required

" Open tagbar automatically in C files, optional

autocmd FileType c call tagbar#autoopen(0)

38

https://github.com/tpope/vim-fugitive
http://vimcasts.org/episodes/fugitive-vim---a-complement-to-command-line-git/
https://github.com/majutsushi/tagbar

Setting up Vim
" Open tagbar automatically in Python files, optional

autocmd FileType python call tagbar#autoopen(0)

" Show status bar, optional

set laststatus=2

" Set status as git status (branch), optional

set statusline=%{FugitiveStatusline()}

To download and install these plugins, run the following command:
$ vim +PluginInstall +qall

You should see output for the download and installation of the pluginsspecified in the configuration file.
When editing or exploring the CPython source code, you will want tojump quickly between methods, functions, and macros. A basic textsearch won’t distinguish a call to a function or its definition from theimplementation. But you can use an application called ctags to indexsource files across a multitude of languages into a plain text database.
To index CPython’s headers for all the C files and Python files in thestandard library, run the following code:
$./configure

$ make tags

Now open the Python ceval.c file in Vim:
$ vim Python/ceval.c

39

http://ctags.sourceforge.net/

Setting up Vim
You’ll see the Git status at the bottom and the functions, macros, andvariables in the right-hand pane:

Next, open a Python file, such as Lib subprocess.py:
$ vim Lib/subprocess.py

Tagbar will show your imports, classes, methods, and functions:

40

Conclusion

Within Vim, you can switch between windows with Ctrl + W , moveto the right-hand pane with L , and use the arrow keys to move upand down between the tagged functions.
Press Enter to skip to any function implementation. To move back tothe editor pane, press Ctrl + W , then press H .

See Also
Check out VIMAdventures for a funway to learn andmemorizethe Vim commands.

Conclusion
If you’re still undecided about which environment to use, then youdon’t need to make a decision right away. We used multiple environ-ments while writing this book and working on changes to CPython.

41

https://vim-adventures.com/

Conclusion
Debugging is a critical feature for productivity, so having a reliable de-bugger that you can use to explore the runtime and understand bugswill save you a lot of time. If you’re used to debugging in Python with
print(), then it’s important to note that this approach doesn’t work inC. You’ll cover debugging in full later in this book.

42

Compiling CPython
Now that you’ve downloaded a development environment and config-ured it, you can compile the CPython source code into an executableinterpreter.
Unlike Python files, C source code must be recompiled each time itchanges. You’ll probably want to bookmark this chapter and memo-rize some of the steps, because you’ll be repeating them a lot.
In the previous chapter, you saw how to set up your development en-vironment with an option to run the build stage, which recompilesCPython. Before the build steps will work, you need a C compiler andsome build tools.
The tools used depend on the operating system you’re using, so skipahead to the section for your operating system.

Note
If you’re concerned that any of these steps will interfere withyour existing CPython installations, don’t worry. The CPythonsource directory behaves like a virtual environment.
When compiling CPython or modifying the source or the stan-dard library, this all stays within the sandbox of the source di-rectory.
If you want to install a custom version, this step is covered inthis chapter.

43

Compiling CPython on macOS
Compiling CPython on macOS
Compiling CPython on macOS requires some additional applicationsand libraries. First, you’ll need the essential C compiler tool kit. Com-mand Line Tools is an app that you can update in macOS throughthe App Store. You need to perform the initial installation on the ter-minal.

Note
To open up a terminal in macOS, go to Applications Other

Terminal . You’ll want to save this app to your Dock, so Ctrl
+ Click the icon and select Keep in Dock .

Within the terminal, install the C compiler and tool kit by running thefollowing:
$ xcode-select --install

After running this command, you’ll be prompted to download and in-stall a set of tools, including Git, Make, and the GNU C compiler.
You’ll also need a working copy of OpenSSL to use for fetching pack-ages from the PyPI website. If you plan on using this build to installadditional packages, then SSL validation is required.
The most straightforward way to install OpenSSL on macOS is to useHomebrew.

Note
If you don’t haveHomebrew, then you can download and installit directly from GitHub with the following command:
$ /usr/bin/ruby -e "$(curl -fsSL \

https://raw.githubusercontent.com/Homebrew/install/master/install)"

44

https://www.openssl.org/
https://brew.sh

Compiling CPython on macOS
Once you have Homebrew installed, you can install the dependenciesfor CPython with the brew install command:
$ brew install openssl xz zlib gdbm sqlite

Now that you have the dependencies, you can run the configure script.
The Homebrew command brew --prefix <package> will give the direc-tory where <package> is installed. You will enable support for SSL bycompiling the location that Homebrew uses.
The flag --with-pydebug enables debug hooks. Add this flag if you in-tend on debugging for development or testing purposes. DebuggingCPython is covered extensively in the “Debugging” chapter.
The configuration stage needs to be run only once, with the locationof the zlib package specified:
$ CPPFLAGS="-I$(brew --prefix zlib)/include" \

LDFLAGS="-L$(brew --prefix zlib)/lib" \

./configure --with-openssl=$(brew --prefix openssl) \

--with-pydebug

Running ./configure will generate a makefile in the root of the reposi-tory. You can use it to automate the build process.
You can now build the CPython binary by running the following com-mand:
$ make -j2 -s

See Also
Formore information on the options for make, see the section “AQuick Primer on Make.”

During the build, youmay receive some errors. In the build summary,
make will notify you that not all packages were built. For example, the
ossaudiodev, spwd, and _tkinter packageswill fail to buildwith this set of

45

Compiling CPython on Linux
instructions. That’s okay if you aren’t planning on developing againstthese packages. If you are, then check out the Python Developer’sGuide for more information.
The build will take a few minutes and generate a binary called
python.exe. Every time you make changes to the source code, you’llneed to rerun make with the same flags.
The python.exe binary is the debug binary of CPython. Execute
python.exe to see a working REPL:
$./python.exe

Python 3.9 (tags/v3.9:9cf67522, Oct 5 2020, 10:00:00)

[Clang 10.0.1 (clang-1001.0.46.4)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

Important
Yes, that’s right, the macOS build has a .exe file extension. Thisextension is not because it’s a Windows binary!
Because macOS has a case-insensitive file system, the devel-opers didn’t want people to accidentally refer to the directory
Python/when working with the binary, so they appended .exe toavoid ambiguity.
If you later run make install or make altinstall, then the file willbe renamed python before it’s installed onto your system.

Compiling CPython on Linux
To compile CPython on Linux, you first need to download and install
make, gcc, configure, and pkgconfig.
Use this command for Fedora Core, RHEL, CentOS, or other YUM-based systems:

46

https://devguide.python.org/
https://devguide.python.org/

Compiling CPython on Linux
$ sudo yum install yum-utils

Use this command for Debian, Ubuntu, or other APT-based systems:
$ sudo apt install build-essential

Then install some additional required packages.
Use this command for Fedora Core, RHEL, CentOS or other YUM-based systems:
$ sudo yum-builddep python3

Use this command for Debian, Ubuntu, or other APT-based systems:
$ sudo apt install libssl-dev zlib1g-dev libncurses5-dev \

libncursesw5-dev libreadline-dev libsqlite3-dev libgdbm-dev \

libdb5.3-dev libbz2-dev libexpat1-dev liblzma-dev libffi-dev

Now that you have the dependencies, you can run the configure script,optionally enabling the debug hooks using --with-pydebug:
$./configure --with-pydebug

Next, you can build the CPython binary by running the generatedmakefile:
$ make -j2 -s

See Also
For more help on the options for make, see the section “A QuickPrimer on Make.”

Review the output to ensure that there were no issues compiling the
_ssl module. If there were, then check with your distribution for in-structions on installing the headers for OpenSSL.
During the build, youmay receive some errors. In the build summary,
makewill notify you that not all packages were built. That’s okay if you

47

Installing a Custom Version
aren’t planning on developing against those packages. If you are, thencheck out the package details for required libraries.
The build will take a few minutes and generate a binary called python.This is the debug binary of CPython. Execute ./python to see a workingREPL:
$./python

Python 3.9 (tags/v3.9:9cf67522, Oct 5 2020, 10:00:00)

[Clang 10.0.1 (clang-1001.0.46.4)] on Linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

Installing a Custom Version
If you’re happy with your changes and want to use them inside yoursystem, then you can install the Python binary fromyour source repos-itory as a custom version.
For macOS and Linux, use the altinstall command, which doesn’tcreate symbolic links for python3 and installs a standalone version:
$ make altinstall

For Windows, you have to change the build configuration from De-bug to Release, then copy the packaged binaries to a directory on yourcomputer that is part of the system path.

A Quick Primer on Make
As a Python developer, you might not have come across make before.Or perhaps you have, but you haven’t spent much time with it.
For C, C++, and other compiled languages, the list of commands youneed to execute to load, link, and compile your code in the right ordercan be very long. When compiling applications from source, you needto link any external libraries in the system.

48

A Quick Primer on Make
It would be unrealistic to expect the developer to know the locationsof all of these libraries and to copy and paste them into the commandline, so make and configure are commonly used in C/C++ projects toautomate the creation of a build script.
When you executed ./configure, autoconf searched your system for thelibraries that CPython requires and copied their paths into a makefile.
The generated makefile is similar to a shell script and is broken intosections called targets.
Take the docclean target as an example. This target deletes some gen-erated documentation files using the rm command:
docclean:

-rm -rf Doc/build

-rm -rf Doc/tools/sphinx Doc/tools/pygments Doc/tools/docutils

To execute this target, run make docclean. docclean is a simple target asit runs only two commands.
This is the convention for executing a make target:
$ make [options] [target]

If you call make without specifying a target, then make will run the de-fault target, which is the first target specified in the makefile. ForCPython, this is the all target, which compiles all parts of CPython.
make has many options. Here are some you’ll find useful throughoutthis book:
Option Use
-d, --debug[=FLAGS] Print various types of debugging information
-e, --environment-overrides Environment variables override makefiles
-i, --ignore-errors Ignore errors from commands
-j [N], --jobs[=N] Allow N jobs at once or infinite jobs otherwise
-k, --keep-going Keep going when some targets can’t be made
-l [N], --load-average[=N],
--max-load[=N]

Start multiple jobs only if load < N

49

CPython’s Make Targets
Option Use
-n, --dry-run Print commands instead of running them
-s, --silent Don’t echo commands
-S, --stop Stop when targets can’t be made

In the next section and throughout the book, you’ll run makewith theseoptions:
$ make -j2 -s [target]

The -j2 flag allows make to run two jobs simultaneously. If you havefour or more cores, then you can change this to four or higher and thecompilation will complete faster.
The -s flag stops the makefile from printing every command it runs tothe console. If you want to see what’s happening, then remove the -sflag.

CPython’s Make Targets
For both Linux and macOS, you’ll find yourself needing to clean upfiles, build, or refresh the configuration. The sections below containtables outlining a number of useful make targets built into CPython’smakefile.
Build Targets
The following targets are used for building the CPython binary:
Target Purpose
all (default) Build the compiler, libraries, and modules
clinic Run Argument Clinic on all source files
profile-opt Compile the Python binary with profile-guidedoptimization
regen-all Regenerate all generated files
sharedmods Build the shared modules

50

CPython’s Make Targets
Test Targets
The following targets are used for testing your compiled binary:
Target Purpose
coverage Compile and run tests with gcov

coverage-lcov Create coverage HTML reports
quicktest Run a faster set of regression tests by excluding the teststhat take a long time
test Run a basic set of regression tests
testall Run the full test suite twice, once without .pyc files andonce with them
testuniversal Run the test suite for both architectures in a universalbuild on OS X

Cleaning Targets
The primary cleaning targets are clean, clobber, and distclean. The
clean target is for generally removing compiled and cached librariesand .pyc files.
If you find that clean doesn’t do the job, then try clobber. The clob-

ber target will remove your makefile, so you’ll have to run ./configureagain.
To completely clean out an environment before distribution, run the
distclean target.
The following list includes the three primary targets listed above, aswell as some additional cleaning targets:
Target Purpose
check-clean-src Check that the source is clean when building out ofsource
clean Remove .pyc files, compiled libraries, and profiles
cleantest Remove test_python_* directories of previous failed testjobs
clobber Same as clean but also remove libraries, tags,configurations, and builds

51

CPython’s Make Targets
Target Purpose
distclean Same as clobber but also remove anything generatedfrom source, such as makefiles
docclean Remove built documentation in Doc/

profile-removal Remove any optimization profiles
pycremoval Remove .pyc files

Installation Targets
There are two flavors of installation targets: the default version, suchas install, and the alt version, such as altinstall. If you want to in-stall the compiled version onto your computer but don’t want it tobecome the default Python 3 installation, then use the alt version ofthe commands:
Target Purpose
altbininstall Install the python interpreter with the version affixed,such as python3.9

altinstall Install shared libraries, binaries, and documentationwith the version suffix
altmaninstall Install the versioned manuals
bininstall Install all the binaries, such as python, idle, and 2to3

commoninstall Install shared libraries and modules
install Install shared libraries, binaries, and documentation(will run commoninstall, bininstall, and maninstall)
libinstall Install shared libraries
maninstall Install the manuals
sharedinstall Load modules dynamically

After you install with make install, the command python3 will linkto your compiled binary. If you use make altinstall, however, only
python$(VERSION) will be installed, and the existing link for python3 willremain intact.
Miscellaneous Targets
Below are some additional make targets that you may find useful:

52

Compiling CPython on Windows
Target Purpose
autoconf Regenerate configure and pyconfig.h.in

python-config Generate the python-config script
recheck Rerun configure with the same options as last time
smelly Check that exported symbols start with Py or _Py (seePEP 7)
tags Create a tags file for vi
TAGS Create a tags file for Emacs

Compiling CPython onWindows
There are twoways to compile theCPython binaries and libraries fromWindows:
1. Compile from the command prompt. This still requires the Mi-crosoft Visual C++ compiler, which comes with Visual Studio.
2. Open PCbuild pcbuild.sln from Visual Studio and build directly.
In the sections below, you’ll explore both of these options.
Installing the Dependencies
For both the command prompt compile script and the Visual Studiosolution, you need to install several external tools, libraries, and Cheaders.
Inside the PCbuild folder is a .bat file that automates this process foryou. Open a command prompt window inside PCbuild and execute
PCbuild get_externals.bat:
> get_externals.bat

Using py -3.7 (found 3.7 with py.exe)

Fetching external libraries...

Fetching bzip2-1.0.6...

Fetching sqlite-3.28.0.0...

Fetching xz-5.2.2...

Fetching zlib-1.2.11...

53

https://www.python.org/dev/peps/pep-0007/#naming-conventions

Compiling CPython on Windows
Fetching external binaries...

Fetching openssl-bin-1.1.1d...

Fetching tcltk-8.6.9.0...

Finished.

Now you can compile from either the command prompt or Visual Stu-dio.
Compiling From the Command Prompt
To compile from the command prompt, you need to select the CPUarchitecture you want to compile against. The default is win32, butchances are that you want a 64-bit (amd64) binary.
If you do any debugging, then the debug build comes with the abilityto attach breakpoints in the source code. To enable the debug build,you add -c Debug to specify the debug configuration.
By default, build.bat will fetch external dependencies, but becausewe’ve already done that step, it will print a message skipping down-loads:
> build.bat -p x64 -c Debug

This command will produce the Python binary PCbuild amd64

python_d.exe. Start that binary directly from the command prompt:
> amd64\python_d.exe

Python 3.9 (tags/v3.9:9cf67522, Oct 5 2020, 10:00:00)

[MSC v.1922 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

You’re now inside the REPL of your compiled CPython binary.
To compile a release binary, use this command:
> build.bat -p x64 -c Release

54

Compiling CPython on Windows
This command will produce the binary PCbuild amd64 python.exe.

Note
The suffix _d specifies that CPython was built in the debug con-figuration.
The released binaries on Python.org are compiled in theprofile-guided optimization (PGO) configuration. See the“Profile-Guided Optimization (PGO)” section at the end of thischapter for more details on PGO.

Arguments
The following arguments are available in build.bat:
Flag Purpose Expected Value
-p Build platform CPUarchitecture x64, Win32 (default), ARM, ARM64
-c Build configuration Release (default), Debug, PGInstrumentor PGUpdate
-t Build target Build (default), Rebuild, Clean,

CleanAll

Flags
Here are some optional flags you can use for build.bat:
Flag Purpose
-v Verbose mode: show informational messages during build
-vv Very verbose mode: show detailed messages during build
-q Quiet mode: show only warnings and errors during build
-e Download and install external dependencies (default)
-E Don’t download or install external dependencies
--pgo Build with profile-guided optimization
--regen Regenerate all grammar and tokens (used when you updatethe language)

55

Compiling CPython on Windows
For a full list, run build.bat -h.
Compiling From Visual Studio
Inside the PCbuild folder is a Visual Studio solution file, PCbuild

pcbuild.sln, for building and exploring CPython source code.
When the solution file is loaded, it will prompt you to retarget theprojects inside the solution to the version of the C/C++ compiler thatyou have installed. Visual Studio will also target the release of theWindows SDK that you have installed.
Be sure to change the Windows SDK version to the newest installedversion and the platform toolset to the latest version. If you missedthis window, then you can right-click the solution file in the Solutionsand Projects window and select Retarget Solution .
Navigate to Build Configuration Manager and ensure the Active Solu-tion Configuration drop-down list is set to Debug and the Active So-lution Platform list is set to either x64 for 64-bit CPU architecture or
win32 for 32-bit.
Next, build CPython by pressing Ctrl + Shift + B or choosing Build

Build Solution . If you receive any errors about the Windows SDK be-ing missing, make sure you set the right targeting settings in the Re-target Solution window. You should also see aWindows Kits folder inyour Start menu with Windows Software Development Kit inside it.
The build stage could take ten minutes or more the first time. Oncethe build completes, you may see a few warnings that you can ignore.
To start the debug version of CPython, press F5 , and CPython willlaunch the REPL in debug mode:

56

Compiling CPython on Windows

You can run the release build by changing the build configurationfrom Debug to Release on the top menu bar and rerunning Build
Build Solution . You now have both debug and release versions of theCPython binary within PCbuild amd64.

You can set up Visual Studio to be able to open a REPL witheither the release or debug build by choosing Tools Python
Python Environments from the top menu. In the Python Envi-ronments panel, click Add Environment and then target the debugor release binary. The debug binary will end in _d.exe, such as

python_d.exe or pythonw_d.exe.
You’ll most likely want to use the debug binary as it comes with debug-ging support in Visual Studio and will be useful as you read throughthis book.
In the Add Environment window, target the python_d.exe file as the in-terpreter inside PCbuild amd64 and the pythonw_d.exe as the windowedinterpreter:

57

Compiling CPython on Windows

Start a REPL session by clicking Open Interactive Window in the PythonEnvironments window and you’ll see the REPL for the compiled ver-sion of Python:

Throughout this book, there will be REPL sessions with example com-mands. I encourage you to use the debug binary to run these REPLsessions in case you want to put in any breakpoints within the code.

58

Profile-Guided Optimization
To make it easier to navigate the code, in the Solution view, click thetoggle button next to the Home icon to switch to Folder view:

Proрle-Guided Optimization
The macOS, Linux, and Windows build processes have flags forproрle-guided optimization (PGO). PGO isn’t something cre-ated by the Python team, but a feature of many compilers, includingthose used by CPython.
PGOworks by doing an initial compilation, then profiling the applica-tion by running a series of tests. The profile is then analyzed, and thecompiler makes changes to the binary that improve performance.
For CPython, the profiling stage runs python -m test --pgo, which ex-ecutes the regression tests specified in Lib test libregrtest pgo.py.These tests have been specifically selected because they use a com-monly used C extension module or type.

59

Profile-Guided Optimization
Note
The PGO process is time-consuming, so to keep your compila-tion time short, I’ve excluded it from the lists of recommendedsteps offered throughout this book.
If you want to distribute a custom-compiled version of CPythoninto a production environment, then you should run ./configurewith the --with-pgo flag in Linux and macOS and use the --pgoflag in build.bat on Windows.

Because the optimizations are specific to the platform and architec-ture that the profile was executed on, PGO profiles can’t be sharedbetween operating systems or CPU architectures. The distributionsof CPython on Python.org have already been through PGO, so if yourun a benchmark on a vanilla-compiled binary, then it will be slowerthan one downloaded from Python.org.
The Windows, macOS, and Linux profile-guided optimizationsinclude these checks and improvements:
• Function inlining: If a function is regularly called from anotherfunction, then it will be inlined, or copied into the calling func-tion, to reduce the stack size.
• Virtual call speculation and inlining: If a virtual function callfrequently targets a certain function, then PGO can insert a condi-tionally executed direct call to that function. The direct call canthen be inlined.
• Register allocation optimization: Based on profile data re-sults, the PGO will optimize register allocation.
• Basic block optimization: Basic block optimization allowscommonly executed basic blocks that temporally execute within agiven frame to be placed in the same locality, or set of pages. Itminimizes the number of pages used, which minimizes memoryoverhead.

60

Conclusion
• Hot spot optimization: Functions that the program spends themost execution time on can be optimized for speed.
• Function layout optimization: After PGO analyzes the callgraph, functions that tend to be along the same execution pathare moved to the same section of the compiled application.
• Conditional branch optimization: PGO can look at a decisionbranch, like an if… else if or switch statement, and spot the mostcommonly used path. For example, if there are ten cases in a switchstatement, and one is used 95 percent of the time, then that casewill be moved to the top so that it will be executed immediately inthe code path.
• Dead spot separation: Code that isn’t called during PGO ismoved to a separate section of the application.

Conclusion
In this chapter, you’ve seen how to compile CPython source code intoa working interpreter. You’ll use this knowledge throughout the bookas you explore and adapt the source code.
You might need to repeat the compilation steps dozens or even hun-dreds of times when working with CPython. If you can adapt yourdevelopment environment to create shortcuts for recompilation, thenit’s better to do that now and save yourself a lot of time.

61

The Python Language andGrammar
The purpose of a compiler is to convert one language into another.Think of a compiler like a translator. You would hire a translator tolisten to you speaking in English and then repeat your words in a dif-ferent language, like Japanese.
To accomplish this, the translator must understand the grammaticalstructures of both the source and target languages.
Some compilers will compile into a low-level machine code that canbe executed directly on a system. Other compilers will compile intoan intermediary language to be executed by a virtual machine.
One consideration when choosing a compiler is the system portabilityrequirements. Java and .NET CLR will compile into an intermediarylanguage so that the compiled code is portable across multiple systemarchitectures. C, Go, C++, and Pascal will compile into an executablebinary. This binary is built for the platform on which it was compiled.
Python applications are typically distributed as source code. The roleof the Python interpreter is to convert the Python source code andexecute it in one step. The CPython runtime compiles your code whenit runs for the first time. This step is invisible to the regular user.
Python code isn’t compiled into machine code. It’s compiled into alow-level intermediary language called bytecode. This bytecode isstored in .pyc files and cached for execution. If you run the same

62

https://en.wikipedia.org/wiki/Java_bytecode
https://en.wikipedia.org/wiki/Common_Language_Runtime

Why CPython Is Written in C and Not Python
Python application twice without changing the source code, then itwill be faster on the second execution. This is because it loads thecompiled bytecode instead of recompiling each time.

Why CPython Is Written in C and NotPython
The C in CPython is a reference to the C programming language, indi-cating that this Python distribution is written in the C language.
This statement is mostly true. The compiler in CPython is written inpure C. However, many of the standard library modules are writtenin pure Python or a combination of C and Python.
So Why Is the CPython Compiler Written in C and Not Python?
The answer is based on how compilers work. There are two types ofcompilers:
1. Self-hosted compilers are compilers written in the languagethey compile, such as the Go compiler. This is done by a processknown as bootstrapping.
2. Source-to-source compilers are compilers written in anotherlanguage that already has a compiler.
If you’re writing a new programming language from scratch, then youneed an executable application to compile your compiler! You need acompiler to execute anything, so when new languages are developed,they’re often written first in an older, more established language.
There are also tools available that can take a language specificationand create a parser, which you’ll learn about later in this chapter. Pop-ular compiler-compilers include GNU Bison, Yacc, and ANTLR.

63

https://en.wikipedia.org/wiki/Self-hosting_(compilers)
https://en.wikipedia.org/wiki/Source-to-source_compiler

Why CPython Is Written in C and Not Python
See Also
If youwant to learnmore about parsers, then check out the Larkproject. Lark is a parser for context-free grammar written inPython.

An excellent example of compiler bootstrapping is the Go program-ming language. The first Go compiler was written in C, then once Gocould be compiled, the compiler was rewritten in Go.
CPython, on the other hand, kept its C heritage. Many of the standardlibrarymodules, like the sslmodule or the socketsmodule, arewrittenin C to access low-level operating system APIs.
TheAPIs in theWindows and Linux kernels for creating network sock-ets, working with the file system, or interacting with the display wereall written in C, so it made sense for Python’s extensibility layer to befocused on the C language. Later in this book, you’ll cover the Pythonstandard library and the C modules.
There is a Python compiler written in Python called PyPy. PyPy’s logois an Ouroboros to represent the self-hosting nature of the compiler.
Another example of a cross-compiler for Python is Jython. Jythonis written in Java and compiles from Python source code into Javabytecode. In the same way that CPython makes it easy to import Clibraries and use them from Python, Jython makes it easy to importand reference Java modules and classes.
The first step to creating a compiler is to define the language. Forexample, this is not valid Python:
def my_example() <str> :

{

void* result = ;

}

The compiler needs strict rules for the grammatical structure for thelanguage before it tries to execute it.
64

https://github.com/lark-parser/lark
https://realpython.com/python-sockets/
https://realpython.com/python-sockets/
https://realpython.com/working-with-files-in-python/
https://realpython.com/python-gui-with-wxpython/
https://pypy.org/
https://en.wikipedia.org/wiki/Ouroboros
https://www.jython.org/

The Python Language Specification
Note
For the rest of this book, ./python will refer to the compiled ver-sion of CPython. However, the actual command will depend onyour operating system.
For Windows:
> python.exe

For Linux:
$./python

For macOS:
$./python.exe

The Python Language Speciрcation
Contained within the CPython source code is the definition of thePython language. This document is the reference specification usedby all the Python interpreters.
The specification is in both ahuman-readable and amachine-readableformat. Inside the documentation is a detailed explanation of thePython language outlining what is allowed and how each statementshould behave.
Language Documentation
The Doc reference directory contains reStructuredText explanationsof the features in the Python language. These files form the officialPython reference guide at docs.python.org/3/reference.
Inside the directory are the files you need to understand the wholelanguage, structure, and keywords:

65

http://docutils.sourceforge.net/rst.html
https://docs.python.org/3/reference/

The Python Language Specification

cpython/Doc/reference

compound_stmts.rst

datamodel.rst

executionmodel.rst

expressions.rst

grammar.rst

import.rst

index.rst

introduction.rst

lexical_analysis.rst

simple_stmts.rst

toplevel_components.rst

Compound statements like if, while, for, and function definitions

Objects, values, and types

The structure of Python programs

The elements of Python expressions

Python’s core grammar (referencing Grammar/Grammar)

The import system

Index for the language reference

Introduction to the reference documentation

Lexical structure like lines, indentation, tokens, and keywords

Simple statements like assert, import, return, and yield

Description of the ways to execute Python, like scripts and modules

An Example
Inside Doc reference compound_stmts.rst, you can see a simple exampledefining the with statement.
The with statement has many forms, the simplest being the instantia-tion of a context manager and a nested block of code:
with x():

...

You can assign the result to a variable using the as keyword:
with x() as y:

...

You can also chain context managers together with a comma:
with x() as y, z() as jk:

...

The documentation contains the human-readable specification of thelanguage. The machine-readable specification is housed in a singlefile, Grammar python.gram.

66

https://dbader.org/blog/python-context-managers-and-with-statement
https://dbader.org/blog/python-context-managers-and-with-statement

The Python Language Specification
The Grammar File
Python’s grammar file uses a parsing expression grammar (PEG) spec-ification. In the grammar file you can use the following notation:
• * for repetition
• + for at-least-once repetition
• [] for optional parts
• | for alternatives
• () for grouping

As an example, think about how you would define a cup of coffee:
• It must have a cup.
• It must include at least one shot of espresso and can contain mul-tiple shots.
• It can have milk, but this is optional.
• It can have water, but this is optional.
• If it contains milk, then the milk can be of various types, like full-fat, skimmed, or soy.

Defined in PEG, a coffee order could look like this:
coffee: 'cup' ('espresso')+ ['water'] [milk]

milk: 'full-fat' | 'skimmed' | 'soy'

See Also
In CPython 3.9, the CPython source code has two grammar files.One legacy grammar is written in a context-free notation calledBackus-Naur Form (BNF). In CPython 3.10, the BNF grammarfile (Grammar Grammar) has been removed.
BNF isn’t specific to Python and is often used as the notationfor grammar in many other languages.

67

https://en.m.wikipedia.org/wiki/Backus%E2%80%93Naur_form

The Python Language Specification
In this chapter, you’ll visualize grammar with railroad diagrams.Here’s a railroad diagram for the coffee statement:

cup espresso

<

water full-fat

skimmed

soy

In a railroad diagram, each possible combination must go in a linefrom left to right. Optional statements can be bypassed, and somestatements can be formed as loops.
Example: while Statement
There are a few forms of the while statement. The simplest containsan expression, then the : terminal followed by a block of code:
while finished == True:

do_things()

Alternatively, you can use an assignment expression, which is referredto in the grammar as a named_expression. This is a new feature as ofPython 3.8:
while letters := read(document, 10):

print(letters)

Optionally, while statements can be followed by an else statement andblock:
while item := next(iterable):

print(item)

else:

print("Iterable is empty")

68

The Python Language Specification
If you search for while_stmt in the grammar file, then you can see thedefinition:
while_stmt[stmt_ty]:

| 'while' a=named_expression ':' b=block c=[else_block] ...

Anything in quotes is a string literal, known as a terminal. Terminalsare how keywords are recognized.
There are references to two other definitions in these two lines:
1. block refers to a block of code with one or multiple statements.
2. named_expression refers to a simple expression or assignment ex-pression.
Visualized in a railroad diagram, the while statement looks like this:

named_expression : block else : blockwhile

As a more complex example, the try statement is defined in the gram-mar like this:
try_stmt[stmt_ty]:

| 'try' ':' b=block f=finally_block { _Py_Try(b, NULL, NULL, f, EXTRA) }

| 'try' ':' b=block ex=except_block+ el=[else_block] f=[finally_block]..

except_block[excepthandler_ty]:

| 'except' e=expression t=['as' z=target { z }] ':' b=block {

_Py_ExceptHandler(e, (t) ? ((expr_ty) t)->v.Name.id : NULL, b, ...

| 'except' ':' b=block { _Py_ExceptHandler(NULL, NULL, b, EXTRA) }

finally_block[asdl_seq*]: 'finally' ':' a=block { a }

There are two uses of the try statement:
1. try with only a finally statement
2. try with one or many except clauses, followed by an optional else,then an optional finally

69

The Parser Generator
Here are those same options visualized in a railroad diagram:

: block except expression as target : block

<

else : block

finally : block

finally : block

try

The try statement is a good example of a more complex structure.
If you want to understand the Python language in detail, then readthrough the grammar defined in Grammar python.gram.

The Parser Generator
The grammar file itself is never used by the Python compiler. Instead,a parser generator reads the file and generates a parser. If you makechanges to the grammar file, then youmust regenerate the parser andrecompile CPython.
The CPython parser was rewritten in Python 3.9 from a parser tableautomaton (the pgen module) into a contextual grammar parser.
In Python 3.9, the old parser is available at the command line by usingthe -X oldparser flag, and in Python 3.10 it’s removed completely. Thisbook refers to the new parser implemented in 3.9.

Regenerating Grammar
To see pegen, the new PEG generator introduced in CPython 3.9, inaction, you can change part of the Python grammar. Search Grammar

python.gram for small_stmt to see the definition of small statements:
70

Regenerating Grammar
small_stmt[stmt_ty] (memo):

| assignment

| e=star_expressions { _Py_Expr(e, EXTRA) }

| &'return' return_stmt

| &('import' | 'from') import_stmt

| &'raise' raise_stmt

| 'pass' { _Py_Pass(EXTRA) }

| &'del' del_stmt

| &'yield' yield_stmt

| &'assert' assert_stmt

| 'break' { _Py_Break(EXTRA) }

| 'continue' { _Py_Continue(EXTRA) }

| &'global' global_stmt

| &'nonlocal' nonlocal_stmt

In particular, the line 'pass' { _Py_Pass(EXTRA) } is for the pass state-ment:

pass

Change that line to accept the terminal (keyword) 'pass' or 'proceed'as keywords by adding a choice, |, and the 'proceed' literal:
| ('pass'|'proceed') { _Py_Pass(EXTRA) }

pass

proceed

Next, rebuild the grammar files. CPython comes with scripts to auto-mate grammar regeneration.
71

Regenerating Grammar
On macOS and Linux, run the make regen-pegen target:
$ make regen-pegen

ForWindows, bring up a command prompt from the PCBuild directoryand run build.bat with the --regen flag:
> build.bat --regen

You should see an output showing that the new Parser pegen parse.cfile has been regenerated.
With the regenerated parser table, when you recompile CPython, itwill use the new syntax. Use the same compilation steps you used foryour operating system in the last chapter.
If the code compiled successfully, then you can execute your newCPython binary and start a REPL.
In the REPL, you can now try defining a function. Instead of using the
pass statement, use the proceed keyword alternative that you compiledinto the Python grammar:
$./python

Python 3.9 (tags/v3.9:9cf67522, Oct 5 2020, 10:00:00)

[Clang 10.0.1 (clang-1001.0.46.4)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> def example():

... proceed

...

>>> example()

Congratulations, you’ve changed the CPython syntax and compiledyour own version of CPython!
Next, you’ll explore tokens and their relationship to grammar.

72

Regenerating Grammar
Tokens
Alongside the grammar file in the Grammar folder is the Grammar Tokensfile, which contains each of the unique types found as leaf nodes in aparse tree. Each token also has a name and a generated unique ID.The names make it simpler to refer to tokens in the tokenizer.

Note
The Grammar Tokens file is a new feature in Python 3.8.

For example, the left parenthesis is called LPAR, and semicolons arecalled SEMI. You’ll see these tokens later in the book:
LPAR '('

RPAR ')'

LSQB '['

RSQB ']'

COLON ':'

COMMA ','

SEMI ';'

As with the Grammar file, if you change the Grammar Tokens file, you needto rerun pegen.
To see tokens in action, you can use the tokenize module in CPython.

Note
The tokenizer written in Python is a utility module. The actualPython parser uses a different process for identifying tokens.

Create a simple Python script called test_tokens.py:
cpython-book-samples 13 test_tokens.py

Demo application

def my_function():

proceed

73

Regenerating Grammar
Input the test_tokens.py file to amodule built into the standard librarycalled tokenize. You’ll see the list of tokens by line and character. Usethe -e flag to output the exact token names:
$./python -m tokenize -e test_tokens.py

0,0-0,0: ENCODING 'utf-8'

1,0-1,14: COMMENT '# Demo application'

1,14-1,15: NL '\n'

2,0-2,3: NAME 'def'

2,4-2,15: NAME 'my_function'

2,15-2,16: LPAR '('

2,16-2,17: RPAR ')'

2,17-2,18: COLON ':'

2,18-2,19: NEWLINE '\n'

3,0-3,3: INDENT ' '

3,3-3,7: NAME 'proceed'

3,7-3,8: NEWLINE '\n'

4,0-4,0: DEDENT ''

4,0-4,0: ENDMARKER ''

In the output, the first column is the range of the line and columncoordinates, the second column is the name of the token, and the finalcolumn is the value of the token.
In the output, the tokenize module has implied some tokens:
• The ENCODING token for utf-8
• A DEDENT to close the function declaration
• An ENDMARKER to end the file
• A blank line at the end

It’s best practice to have a blank line at the end of your Python sourcefiles. If you omit it, then CPython adds one for you.
The tokenize module is written in pure Python and is located in Lib

tokenize.py.

74

Conclusion
To see a verbose readout of the C parser, you can run a debug buildof Python with the -d flag. Using the test_tokens.py script you createdearlier, run it with the following:
$./python -d test_tokens.py

> file[0-0]: statements? $

> statements[0-0]: statement+

> _loop1_11[0-0]: statement

> statement[0-0]: compound_stmt

...

+ statements[0-10]: statement+ succeeded!

+ file[0-11]: statements? $ succeeded!

In the output, you can see that it highlighted proceed as a keyword. Inthe next chapter, you’ll see how executing the Python binary gets tothe tokenizer and what happens from there to execute your code.
To clean up your code, revert the change in Grammar python.gram, re-generate the grammar again, then clean the build and recompile.
Use the following for macOS or Linux:
$ git checkout -- Grammar/python.gram

$ make regen-pegen

$ make -j2 -s

Or use the following for Windows:
> git checkout -- Grammar/python.gram

> build.bat --regen

> build.bat -t CleanAll

> build.bat -t Build

Conclusion
In this chapter, you’ve been introduced to the Python grammar defini-tions and parser generator. In the next chapter, you’ll expand on thatknowledge to build a more complex syntax feature, an “almost-equal”

75

This is a sample from “CPython Internals: YourGuide to the Python 3 Interpreter”
With this book you’ll cover the critical concepts behind the internals ofCPython and how they work with visual explanations as you go along.
You’ll understand the concepts, ideas, and technicalities of CPython inan approachable and hands-on fashion. At the end of the book you’llbe able to:
• Write custom extensions for Python, written in the C program-ming language (the book includes an “Intro to C for Pythonistas”chapter)
• Use your deep knowledge of the CPython interpreter to improveyour own Python applications
• Contribute to the CPython project and start your journey towardsbecoming a Python Core Developer

If you enjoyed the sample chapters you can purchase a fullversion of the book at realpython.com/cpython-internals

https://realpython.com/cpython-internals

