CPYTHON
INTERNALS

NARRRRRRNRRNNRN
OO TR

YOUR GUIDE TO THE
PYTHON 3 INTERPRETER

FIRST EDITION

BY ANTHONY SHAW AND THE REALPYTHON.COM TUTORIAL TEAM

CPython Internals: Your Guide to the
Python 3 Interpreter

Anthony Shaw

CPython Internals: Your Guide to the Python 3 Interpreter
Anthony Shaw
Copyright © Real Python (realpython.com), 2012—2021

For online information and ordering of this and other books by Real
Python, please visit realpython.com. For more information, please
contact us at info@realpython.com.

ISBN: 9781775093343 (paperback)

ISBN: 9781775093350 (electronic)

Cover design by Aldren Santos

Additional editing and proofreading by Jacob Schmitt

“Python” and the Python logos are trademarks or registered trade-
marks of the Python Software Foundation, used by Real Python with
permission from the Foundation.

Thank you for downloading this ebook. This ebook is licensed for
your personal enjoyment only. This ebook may not be re-sold or
given away to other people. If you would like to share this book
with another person, please purchase an additional copy for each
recipient. If you’re reading this book and did not purchase it,
or it was not purchased for your use only, then please return to
realpython.com/cpython-internals and purchase your own copy.
Thank you for respecting the hard work behind this book.

https://realpython.com/
https://realpython.com/
https://realpython.com/cpython-internals

This is a sample from “CPython Internals: Your
Guide to the Python 3 Interpreter”

With this book you’ll cover the critical concepts behind the internals of
CPython and how they work with visual explanations as you go along.

You'll understand the concepts, ideas, and technicalities of CPython in
an approachable and hands-on fashion. At the end of the book you’ll
be able to:

« Write custom extensions for Python, written in the C program-
ming language (the book includes an “Intro to C for Pythonistas”
chapter)

+ Use your deep knowledge of the CPython interpreter to improve
your own Python applications

 Contribute to the CPython project and start your journey towards
becoming a Python Core Developer

If you enjoyed the sample chapters you can purchase a full
version of the book at realpython.com/cpython-internals

https://realpython.com/cpython-internals

What Readers Say About CPython Internals: Your Guide to
the Python 3 Interpreter

“It’s the book that I wish existed years ago when I started my Python
journey. After reading this book your skills will grow and you will be
able solve even more complex problems that can improve our world.”

— Carol Willing, CPython core developer and member of the
CPython Steering Council

“The ‘Parallelism and Concurrency’ chapter is one of my favorites. I
had been looking to get an in depth understanding around this topic
and I found your book extremely helpful.

Of course, after going over that chapter I couldn’t resist the rest. I am
eagerly looking forward to have my own printed copy once it’s out!

I had gone through your ‘Guide to the CPython Source Code’ article
previously, which got me interested in finding out more about the in-
ternals.

There are a ton of books on Python which teach the language, but I
haven't really come across anything that would go about explaining
the internals to those curious minded.

And while I teach Python to my daughter currently, I have this book
added in her must-read list. She’s currently studying information sys-
tems at Georgia State University.”

— Milan Patel, vice president at (a major investment bank)

“What impresses me the most about Anthony’s book is how it puts all
the steps for making changes to the CPython code base in an easy-to-
follow sequence. It really feels like a ‘missing manual’ of sorts.

Diving into the C underpinnings of Python was a lot of fun and it
cleared up some longstanding questions marks for me. I found the
chapter about CPython’s memory allocator especially enlightening.

CPython Internals is a great (and unique) resource for anybody look-
ing to take their knowledge of Python to a deeper level.”

— Dan Bader, author of Python Tricks and editor in chief at
Real Python

“This book helped me to better understand how lexing and parsing
works in Python. It’s my recommended source if you want to under-
stand it.”

— Florian Dahlitz, Pythonista

“A comprehensive walkthrough of the Python internals, a topic which
surprisingly has almost no good resource, in an easy-to-understand
manner for both beginners as well as advanced Python users.”

— Abhishek Sharma, data scientist

About the Author

Anthony Shaw is an avid Pythonista and Fellow of the Python Soft-
ware Foundation.

Anthony has been programming since the age of 12 and found a love
for Python while trapped inside a hotel in Seattle, Washington, 15
years later. After ditching the other languages he’d learned, Anthony
has been researching, writing about, and creating courses for Python
ever since.

Anthony also contributes to small and large Open Source projects, in-
cluding CPython, as well as being a member of the Apache Software
Foundation.

Anthony’s passion lies in understanding complex systems, then sim-
plifying them, and teaching them to people.

About the Review Team

Jim Anderson has been programming for a long time in a variety
of languages. He has worked on embedded systems, built distributed
build systems, done off-shore vendor management, and sat in many,
many meetings.

Joanna Jablonski is the executive editor of Real Python. She likes
natural languages just as much as she likes programming languages.
Her love for puzzles, patterns, and pesky little details led her to follow
a career in translation. It was only a matter of time before she would
fall in love with a new language: Python! She joined Real Python in
2018 and has been helping Pythonistas level up ever since.

Contents

Contents
Foreword

Introduction
HowtoUseThisBook
Bonus Material and Learning Resources

Getting the CPython Source Code
What’sin the SourceCode?

Setting Up Your Development Environment

Setting Up Visual Studio
Setting Up Visual StudioCode
Setting Up JetBrainsCLion
SettingupVim.
Conclusion.,

12

14
15
17

21
22

Contents

Compiling CPython 43
Compiling CPythononmacOS 44
Compiling CPythonon Linux 46
Installing a Custom Version 48
A Quick PrimeronMake 48
CPython’s Make Targets 50
Compiling CPython on Windows 53
Profile-Guided Optimization 59
Conclusion., 61

The Python Language and Grammar 62
Why CPython Is Written in C and Not Python 63
The Python Language Specification 65
The Parser Generator 70
Regenerating Grammar 70
Conclusion. 75

Configuration and Input 77
Configuration State 80
Build Configuration 84
Building a Module From Input 85
Conclusion. 90

Lexing and Parsing With Syntax Trees 92
Concrete Syntax Tree Generation 93
The CPython Parser-Tokenizer 97
Abstract Syntax Trees v it 102
Important Terms to Remember 112
Example: Adding an Almost-Equal Comparison Operator . 112
Conclusion., 118

Contents

The Compiler 119
Related Source Files 120
ImportantTerms 121
Instantiating a Compiler 122
Future Flags and Compiler Flags 123
SymbolTables 124
Core Compilation Process 131
Assembly 138
Creatinga Code Object 142
Using Instaviz to Show a Code Object 143
Example: Implementing the Almost-Equal Operator 145
Conclusion. 151

The Evaluation Loop 152
Related Source Files 153
ImportantTerms 153
Constructing Thread State 154
Constructing Frame Objects 155
Frame Execution 163
TheValueStack 166
Example: Adding an ItemtoalList 172
Conclusion., 176

Memory Management 178
Memory AllocationinC 179
Design of the Python Memory Management System 182
The CPython Memory Allocator 184
The Object and PyMem Memory Allocation Domains . . . 194
The Raw Memory Allocation Domain 197
Custom Domain Allocators 198
Custom Memory Allocation Sanitizers 199
The PyArena MemoryArena 202
Reference Counting 203
Garbage Collection 210
Conclusion., 220

Contents

Parallelism and Concurrency 222
Models of Parallelism and Concurrency 224
The StructureofaProcess 224
Multiprocess Parallelism 227
Multithreading 251
Asynchronous Programming 266
Generators e e e e e e e e e e e e e e e e 266
Coroutines o v i i i i e 273
Asynchronous Generators 279
Subinterpreters 0., 280
Conclusion. 284

Objects and Types 286
Examplesin ThisChapter 287
Built-inTypes 288
Object and Variable Object Types 289
Thetype TYPE . . . v v v v v i e e e e e e e e e 290
Thebool and long Types v v v v v v v v v 204
The Unicode String Type 299
The Dictionary Type 310
Conclusion. 316

The Standard Library 317
PythonModules 317
Pythonand CModules 319

The Test Suite 323
Running the Test Suite on Windows 323
Running the Test Suite on Linux ormacOS 324
TestFlags 325
Running SpecificTests 325
TestingModules 327
Test Utilities 328
Conclusion. 329

10

Contents

Debugging 330
Usingthe CrashHandler 331
Compiling Debug Support 331
Using LLDBformacOS 332
UsingGDB 336
Using Visual Studio Debugger 339
Using CLion Debugger 341
Conclusion. 346

Benchmarking, Profiling, and Tracing 347
Using timeit for Microbenchmarks 348
Using the Python Benchmark Suite for Runtime Benchmarks 350
Profiling Python Code with cProfile 356
Profiling C Code with DTrace 359
Conclusion. 364

Next Steps 365
Writing C Extensions for CPython 365
Improving Your Python Applications 366
Contributing to the CPython Project 367
KeepLearning 370

Appendix: Introduction to C for Python Programmers 372

The C Preprocessor v v v v v v ... 372
BasicCSyntax 376
Conclusion., 383

11

Foreword

A programming language created by a community fos-
ters happiness in its users around the world.

— Guido van Rossum, “King’s Day Speech”

I love building tools that help us learn, empower us to create, and
move us to share knowledge and ideas with others. I feel humbled,
thankful, and proud when I hear how these tools and Python are
helping you to solve real-world problems, like climate change or
Alzheimer’s.

Through my four-decade love of programming and problem solving, I
have spent time learning, writing a lot of code, and sharing my ideas
with others. I've seen profound changes in technology as the world
has progressed from mainframes to cell phone service to the wide-
ranging wonders of the Web and cloud computing. All these technolo-
gies, including Python, have one thing in common.

At one moment, these successful innovations were nothing more than
an idea. The creators, like Guido, had to take risks and leaps of faith
to move forward. Dedication, learning through trial and error, and
working together through many failures built a solid foundation for
success and growth.

CPython Internals will take you on a journey to explore the wildly suc-
cessful programming language Python. The book serves as a guide
to how CPython works under the hood. It will give you a glimpse of
how the core developers crafted the language.

12

http://neopythonic.blogspot.com/2016/04/

Contents

Python’s strengths include its readability and the welcoming commu-
nity dedicated to education. Anthony embraces these strengths when
explaining CPython, encouraging you to read the source and sharing
the building blocks of the language with you.

Why do I want to share Anthony’s CPython Internals with you? It’s the
book that I wish existed years ago when I started my Python journey.
More importantly, I believe we, as members of the Python community,
have a unique opportunity to put our expertise to work to help solve
the complex real-world problems facing us.

I'm confident that after reading this book, your skills will grow, and
you will be able solve even more complex problems and improve our
world.

It’s my hope that Anthony motivates you to learn more about Python,
inspires you to build innovative things, and gives you confidence to
share your creations with the world.

Now is better than never.

— Tim Peters, The Zen of Python

Let’s follow Tim’s wisdom and get started now.
Warmly,

— Carol Willing, CPython core developer and member of the
CPython Steering Council

13

Introduction

Are there certain parts of Python that just seem like magic, like how
finding an item is so much faster with dictionaries than looping over a
list? How does a generator remember the state of variables each time
it yields a value? Why don’t you ever have to allocate memory like you
do with other languages?

The answer is that CPython, the most popular Python runtime, is writ-
ten in human-readable C and Python code.

CPython abstracts the complexities of the underlying C platform and
your operating system. It makes threading straightforward and cross-
platform. It takes the pain of memory management in C and makes it
simple.

CPython gives the developer writing Python code the platform to write
scalable and performant applications. At some stage in your progres-
sion as a Python developer, you’ll need to understand how CPython
works. These abstractions aren’t perfect, and they’re leaky.

Once you understand how CPython works, you can fully leverage its
power and optimize your applications. This book will explain the con-
cepts, ideas, and technicalities of CPython.

In this book, you’ll cover the major concepts behind the internals of
CPython and learn how to:

« Read and navigate the source code

+ Compile CPython from source code

14

How to Use This Book

« Make changes to the Python syntax and compile them into your
version of CPython

« Navigate and comprehend the inner workings of features like lists,
dictionaries, and generators

» Master CPython’s memory management capabilities

+ Scale your Python code with parallelism and concurrency
« Modify the core types with new functionality

+ Run the test suite

« Profile and benchmark the performance of your Python code and
runtime

« Debug C and Python code like a professional

« Modify or upgrade components of the CPython library to con-
tribute them to future versions

Take your time with each chapter and try out the demos and interac-
tive elements. You'll feel a sense of achievement as you grasp the core
concepts that will make you a better Python programmer.

How to Use This Book

This book is all about learning by doing, so be sure to set up your IDE
early on by reading the instructions, downloading the code, and writ-
ing the examples.

For the best results, we recommend that you avoid copying and past-
ing the code examples. The examples in this book took many itera-
tions to get right, and they may also contain bugs.

Making mistakes and learning how to fix them is part of the learning
process. You might discover better ways to implement the examples,
try changing them, and see what effect it has.

With enough practice, you’ll master this material—and have fun along
the way!

15

How to Use This Book

How skilled in Python do I need to be to use this
book?

This book is aimed at intermediate to advanced Python developers.
Every effort has been taken to show code examples, but some inter-
mediate Python techniques will be used throughout.

Do I need to know C to use this book?

You don’t need to be proficient in C to use this book. If you're new
to C, then check out the appendix, “Introduction to C for Python Pro-
grammers,” for a quick introduction.

How long will it take to finish this book?

We don’t recommend rushing through this book. Try reading one
chapter at a time, trying the examples after each chapter and explor-
ing the code simultaneously. Once you’ve finished the book, it will
make a great reference guide for you to come back to in time.

Won'’t the content in this book be out of date
really quickly?

Python has been around for more than thirty years. Some parts of the
CPython code haven’t been touched since they were originally written.
Many of the principles in this book have been the same for ten or more
years.

In fact, while writing this book, we discovered many lines of code that
were written by Guido van Rossum (the author of Python) and left
untouched since version 1.

Some of the concepts in this book are brand-new. Some are even ex-
perimental. While writing this book, we came across issues in the
source code and bugs in CPython that were later fixed or improved.
That’s part of the wonder of CPython as a flourishing open source
project.

16

https://github.com/python/cpython/pulls?q=is%3Apr+author%3Atonybaloney+is%3Amerged+

Bonus Material and Learning Resources

The skills you'll learn in this book will help you read and understand
current and future versions of CPython. Change is constant, and ex-
pertise is something you can develop along the way.

Bonus Material and Learning Resources

This book comes with a number of free bonus resources that you can
access at realpython.com/cpython-internals/resources/. On this web
page you can also find an errata list with corrections maintained by
the Real Python team.

Code Samples

The examples and sample configurations throughout this book will
be marked with a header denoting them as part of the cpython-book-
samples folder:

cpython-book-samples?» 01 » example.py

import this

You can download the code samples at realpython.com/cpython-
internals/resources/.

Code Licenses

The example Python scripts associated with this book are licensed un-
der a Creative Commons Public Domain (CCo) License. This means
you're welcome to use any portion of the code for any purpose in your
own programs.

CPython is licensed under the Python Software Foundation 2.0
license. Snippets and samples of CPython source code used in this
book are done so under the terms of the PSF 2.0 license.

17

https://realpython.com/cpython-internals/resources/
https://realpython.com/cpython-internals/resources/
https://realpython.com/cpython-internals/resources/
https://creativecommons.org/publicdomain/zero/1.0/
https://github.com/python/cpython/blob/master/LICENSE
https://github.com/python/cpython/blob/master/LICENSE

Bonus Material and Learning Resources

The code in this book has been tested with Python 3.9 on Win-
dows 10, macOS 10.15, and Linux.

Formatting Conventions

Code blocks are used to present example code:

This is Python code:
print("Hello, World!™)

Operating system—agnostic commands follow the Unix-style format:

$ # This is a terminal command:

$ python hello-world.py
(The $ is not part of the command.)

Windows-specific commands have the Windows command-line for-
mat:

> python hello-world.py
(The > is not part of the command.)
Command-line syntax follows this format:

* Unbracketed text must be typed as it is shown.

* <Text inside angle brackets>indicates a variable for which you must
supply a value. For example, you would replace <filename> with the
name of a specific file.

+ [Text inside square brackets] indicates an optional argument that
you may supply.

Bold text denotes a new or important term.

18

Bonus Material and Learning Resources

Notes and alert boxes appear as follows:

This is a note filled in with placeholder text. The quick brown
fox jumps over the lazy dog. The quick brown Python slithers
over the lazy hog.

Important

This is an alert also filled in with placeholder text. The quick
brown fox jumps over the lazy dog. The quick brown Python
slithers over the lazy hog.

Any references to a file within the CPython source code will be shown
like this:

path» to» file.py

Shortcuts or menu commands will be given in sequence, like this:

[File) Other) Option)

Keyboard commands and shortcuts will be given for both macOS and
Windows:

(Ce+[Space

Feedback and Errata

We welcome ideas, suggestions, feedback, and the occasional rant.
Did you find a topic confusing? Did you find an error in the text or
code? Did we leave out a topic you would love to know more about?

We’re always looking to improve our teaching materials. Whatever
the reason, please send in your feedback at the link below:

realpython.com/cpython-internals/feedback

https://realpython.com/cpython-internals/feedback

Bonus Material and Learning Resources

About Real Python

At Real Python, youll learn real-world programming skills from a
community of professional Pythonistas from all around the world.

The realpython.com website launched in 2012 and currently helps
more than three million Python developers each month with books,
programming tutorials, and other in-depth learning resources.

Here’s where you can find Real Python on the Web:

« realpython.com

e @realpython on Twitter

» The Real Python Newsletter
« The Real Python Podcast

20

https://realpython.com
https://realpython.com
https://realpython.com
https://twitter.com/realpython
https://realpython.com/newsletter
https://realpython.com/podcast

Getting the CPython Source
Code

When you type python at the console or install a Python distribution
from Python.org, you're running CPython. CPython is one of many
Python implementations maintained and written by different teams
of developers. Some alternatives you may have heard of are PyPy,
Cython, and Jython.

The unique thing about CPython is that it contains both a runtime
and the shared language specification that all other Python implemen-
tations use. CPython is the official, or reference, implementation of
Python.

The Python language specification is the document that describes
the Python language. For example, it says that assert is a reserved
keyword and that [] is used for indexing, slicing, and creating empty
lists.

Think about the features you expect from the Python distribution:
» When you type python without a file or module, it gives an interac-
tive prompt (REPL).

« You can import built-in modules like json, csv, and collections
from the standard library.

+ You can install packages from the Internet using pip.

+ You can test your applications using the built-in unittest library.

21

https://www.python.org
https://www.python.org/download/alternatives/
https://pypy.org/
https://cython.org/
https://www.jython.org/

What’s in the Source Code?

These are all part of the CPython distribution. It includes a lot more
than just a compiler.

In this book, you’ll explore the different parts of the CPython distribu-
tion:

+ The language specification

 The compiler

+ The standard library modules

« The core types

« The test suite

What’s in the Source Code?

The CPython source distribution comes with a whole range of tools,
libraries, and components that you’ll explore in this book.

This book targets version 3.9 of the CPython source code.

To download a copy of the CPython source code, you can use git to
pull the latest version:

$ git clone --branch 3.9 https://github.com/python/cpython
$ cd cpython

The examples in this book are based on Python version 3.9.

Switching to the 3.9 branch is an important step. The master
branch changes on an hourly basis. Many of the examples and
exercises in this book are unlikely to work on master.

22

https://github.com/python/cpython/tree/3.9
https://git-scm.com/

What'’s in the Source Code?

If you don’t have Git available, then you can install it from
git-scm.com. Alternatively, you can download a ZIP file of the
CPython source directly from the GitHub website.

If you download the source as a ZIP file, then it won’t contain
any history, tags, or branches.

Inside the newly downloaded cpython directory, youll find the follow-
ing subdirectories:

E‘] cpython/
——Doc Source for the documentation
Grammar The computer-readable language definition
Include The C header files
Lib Standard library modules written in Python
Mac macOS support files
Misc Miscellaneous files
——Modules Standard library modules written in C
——Objects Core types and the object model
——~Parser The Python parser source code
——PC Windows build support files for older versions of Windows
——PCBuild Windows build support files
Programs Source code for the python executable and other binaries
——Python The CPython interpreter source code
Tools Standalone tools useful for building or extending CPython
——my Custom scripts to automate configuration of the makefile

Next, you’ll set up your development environment.

23

https://git-scm.com/
https://github.com/python/cpython/archive/3.9.zip

Setting Up Your
Development Environment

Throughout this book, you’ll be working with both C and Python code.
It’s essential that you have your development environment configured
to support both languages.

The CPython source code is about 65 percent Python (of which the
tests are a significant part) and 24 percent C. The remainder is a mix
of other languages.

IDE or Editor?

If you haven’t yet decided which development environment to use,
then there’s one decision to make first: whether to use an integrated
development environment (IDE) or a code editor.

« An IDE targets a specific language and toolchain. Most IDEs have
integrated testing, syntax checking, version control, and compila-
tion.

» A code editor enables you to edit code files, regardless of lan-
guage. Most code editors are simple text editors with syntax high-
lighting.

Because of their full-featured nature, IDEs often consume more hard-
ware resources. So if you have limited RAM (less than 8 GB), then a
code editor is recommended.

24

IDE or Editor?

IDEs also take longer to start up. If you want to edit a file quickly, then
a code editor is a better choice.

There are hundreds of editors and IDEs available for free or at a cost.
Here are some commonly used IDEs and editors suitable for CPython
development:

Application Style Supports
Microsoft Visual Studio Code Editor Windows, macOS,
and Linux
Atom Editor Windows, macOS,
and Linux
Sublime Text Editor Windows, macOS,
and Linux
Vim Editor Windows, macOS,
and Linux
Emacs Editor Windows, macOS,
and Linux
Microsoft Visual Studio IDE (C, Python, Windows
and others)
PyCharm by JetBrains IDE (Pythonand Windows, macOS,
others) and Linux
CLion by JetBrains IDE (C and Windows, macOS,
others) and Linux

A version of Microsoft Visual Studio is also available for Mac, but it
doesn’t support Python Tools for Visual Studio or C compilation.

In the sections below, you’ll explore the setup steps for the following
editors and IDEs:

Microsoft Visual Studio
Microsoft Visual Studio Code

« JetBrains CLion

* Vim

Skip ahead to the section for your chosen application, or read all of
them if you want to compare.

25

https://code.visualstudio.com/
https://atom.io/
https://www.sublimetext.com/
https://www.vim.org/
https://www.gnu.org/s/emacs/
https://visualstudio.microsoft.com/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/clion/
https://visualstudio.microsoft.com/vs/mac/

Setting Up Visual Studio

Setting Up Visual Studio

The newest version of Visual Studio, Visual Studio 2019, has built-in
support for Python and the C source code on Windows. I recommend
using it for the examples and exercises in this book. If you already
have Visual Studio 2017 installed, then that would also work.

None of the paid features of Visual Studio are required for com-
piling CPython or completing this book. You can use the free
Community edition.

However, the profile-guided optimization build profile requires
the Professional edition or higher.

Visual Studio is available for free from Microsoft’s Visual Studio web-
site.

Once you've downloaded the Visual Studio installer, you’ll be asked to
select which components you want to install. You’ll need the following
components for this book:

+ The Python development workload
« The optional Python native development tools
+ Python 3 64-bit (3.7.2)
You can deselect Python 3 64-bit (3.7.2) if you already have Python

3.7 installed. You can also deselect any other optional features if you
want to conserve disk space.

The installer will then download and install all the required compo-
nents. The installation can take up to an hour, so you may want to
read on and come back to this section when it finishes.

Once the installation is complete, click to start Visual Studio.
You'll be prompted to sign in. If you have a Microsoft account, you
can either log in or skip that step.

26

https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/

Setting Up Visual Studio

Next, you’ll be prompted to open a project. You can clone
CPython’s Git repository directly from Visual Studio by choosing the
[Clone or check out code] option.

For the repository location, enter https://github.com/python/cpython,
choose your local path, and select [Clone|.

Visual Studio will then download a copy of CPython from GitHub us-
ing the version of Git bundled with Visual Studio. This step also saves
you the hassle of having to install Git on Windows. The download may
take up to ten minutes.

Important

Visual Studio will automatically checkout the master branch.
Before compiling, make sure you change to the 3.9 branch from
within the Team Explorer window. Switching to the 3.9 branch
is an important step. The master branch changes on an hourly
basis. Many of the examples and exercises in this book are un-
likely to work on master.

Once the project has downloaded, you need to point Visual Studio to
the PCBuild» pebuild. sin solution file by clicking Solutions and Projects)

) pebuid. s}

27

Setting Up Visual Studio Code

Solution Explorer - Folder View
QE- e -
Search Solut% v cpython (C\..\Repos\cpython)

B, Click ong pcbuild.sln
]
S°|“t'°r% pythonba.sln
cpython (C:\Users\anthonyshaw\Source\Repos\cpython
.azure-pipelines
.github
Doc

Grammar
Include
Lib

Now that you have Visual Studio configured and the source code
downloaded, you can compile CPython on Windows by following the
steps in the next chapter.

Setting Up Visual Studio Code

Microsoft Visual Studio Code is an extensible code editor with an on-
line marketplace of plugins.

It makes an excellent choice for working with CPython as it supports

both C and Python with an integrated Git interface.

Installing

Visual Studio Code, sometimes known as VS Code, is available with a
simple installer at code.visualstudio.com.

Out of the box, VS Code has the necessary code editing capabilities,
but it becomes more powerful once you install extensions.

28

https://code.visualstudio.com/

Setting Up Visual Studio Code

You can access the Extensions panel by selecting |View)) Extensions|
from the top menu:

(XX Extension: C/C++ — cpython

EXTENSIONS «+ etokh C object.c C listobject.c Extension: C/C++ X cDO -

Search Extensions in Marketplace

C/C++
Y g i e vieizy - Microsoft | @ 8688841 | * % * * Repos
% :;j:::s: Al rea\p{;;_} C/C++ IntelliSense, debugging, and code browsing.
5 C/C++ 0263-insiders2 DBEM * 35 MEEER piease reload Visual Studio
C/C++ IntelliSense, debugging, and code b...

Microsoft Reload Required §5% Please reload Visual Studio Code to enable the updated extension.

GitHub Pull Requests 0130 D 279K % 45
Pull Request Provider for GitHub
GitHub &

W Live Share 107104 SN S C/C++ for Visual Studio Code

Details Contributions Changelog

Real-time collaborative development from t...

o Microsoft

Live Shiars Aixo 0180 @204k %5 Repository | Issues | Documentation | Code Samples | Offline Installers
Adds audio calling capabilities to Visual Stu...
Pyright 1114 DK k45

na VS Code static type checking for Python This preview release of the C/C+-+ extension adds language support for C/C++ to Visual
ms-pyright & Studio Code, including features such as InteliSense and debugging.
Python 20101150704 @1a6M * 45 .)

P Linting, Debugging (multi-threaded, remote.. OVerview and getting started

Microsoft &

C/C++ extension overview
> RECOMMENDED 1 * Get Started with C++ and Windows Subsystem for Linux (WSL) °
> DISABLED o * Get Started with C++ and Mingw-w64
§° d93605de* & ®O0AO0 [JLiveShare @ tonybaloney s iR &

Inside the Extensions panel, you can search for extensions by name
or by their unique identifier, such as ms-vscode. cpptools. In some cases
there are many plugins with similar names, so use the unique identi-
fier to be sure you're installing the right one.

Recommended Extensions for This Book

There are several useful extensions for working with CPython:
e C/C++ (ms-vscode.cpptools) provides support for C/C++, includ-
ing IntelliSense, debugging, and code highlighting.

» Python (ms-python.python) pI‘OVideS rich Python support for edit-
ing, debugging, and reading Python code.

 reStructuredText (lextudio.restructuredtext) provides rich sup-
port for reStructuredText, the format used in the CPython docu-
mentation.

29

https://github.com/Microsoft/vscode-cpptools
https://github.com/Microsoft/vscode-python
https://github.com/vscode-restructuredtext/vscode-restructuredtext

Setting Up Visual Studio Code

« Task Explorer (spmeesseman.vscode-taskexplorer) adds a Task Ex-
plorer panel inside the Explorer tab, making it easier to launch
make tasks.

After you install these extensions, you’ll need to reload the editor.

Many of the tasks in this book require a command line. You can add an
integrated terminal into VS Code by selecting | Terminal)) New Terminall,
A terminal will appear below the code editor:

78 ‘ return 0;

79 N

80

81 static int

82 lict nreallacate exact(Pul ictNhiect xcelf. Pv ccize t cize)

PROBLEMS (250 OUTPUT DEBUG CONSOLE TERMINAL 1:zsh v

+ cpython git:(d93605de72) x []

Using Advanced Code Navigation and Expansion

With the plugins installed, you can perform some advanced code nav-
igation.

For example, if you right-click a function call in a C file and select
[Go to ReferenceSL then VS Code will find other references to that func-
tion in the codebase:

Include > C listobject.h > & PyList_CheckExact(op)

50 #define Py[ist_CheckExact(op) (Py_TYPE(;p) == &;yLis;_Type)
o

_bisectmodule.c ~/cpython/Modules - References (30)

10T INMUEX = LMCETMa_DISECI_TIgNT(IST, Llem, 0, ML/; N

102 i R @ O) \ _bisectmodule.c Modules (2
103 return NULL; if (PyList_CheckExact(list)) {
104 if (PyList_CheckExact(list)) { if (PyList_CheckExact(list)) {
105 if (PyList_Insert(list, index, item) < @) N 5 ClnsiiEes eis B o
106 return NULL;)

107 } > textio.c Modules/_io i
108 else { > _pickle.c Modules 4
109 result = _PyObject_CallMethodId(list, &PyId_insert, > statement.c Modules/_sqlite 3
110 87 {rears == ML) > _testcapimodule.c Modules 1
atial return NULL; -

110 Dy _NEFDEE(racu T4) . >_acmodule.c Modules i
51

52 PyAPI_FUNC(PyObject x) PyList_New(Py_ssize_t size);

30

https://github.com/spmeesseman/vscode-taskexplorer

Setting Up Visual Studio Code

Go to References|is very useful for discovering the proper calling form
for a function.

If you click on or hover over a C macro, then the editor will expand
that macro to the compiled code:

Objects > C listobject.c > @ list_resize(PyListObject * Py_ssize_t)
50
51

52 /* This over-allocates proportional to the list size, making room
53 * for additional growth. The over-allocation is mild, but is
54 * enough to give linear-time amortized behavior over a long
55 * sequence of appends() in the presence of a poorly-performing
56 * system realloc(). #define PY_SSIZE_T_MAX ((Py_ssize_t)(((size_t)-1)>>1))
57 x The growth pattern is: @
58 * Note: new_allocated won't Largest positive value of type Py _ssize_t.
59 * is PY_SSIZE_T_MAX %
Expands to:
60 */
61 new_allocated = (size_t)news ((Py_ssize_ t)(((size_t)-1)>>1))
62 if (new_allocated > (size_t)PY_SSIZE_T_MAX / sizeof(PyObject %)) {
63 PyErr_NoMemory();
64 return -1;
65 }

To jump to the definition of a function, hover over any call to it and

press [Cmd)+[Click| on macOS or [Ctrl|+[Click] on Linux and Windows.

Configuring the Task and Launch Files

VS Code uses a .vscode folder in the workspace directory. If this folder
doesn’t exist, create it now. Inside this folder, you can create the fol-
lowing files:
+ tasks.json for shortcuts to commands that execute your project
¢ launch.json to configure the debugger (see the chapter “Debug-
ging”)
« Other plugin-specific files

Create a tasks.json file inside the .vscode directory if one doesn’t al-
ready exist. This tasks.json file will get you started:

cpython-book-samples?» 11» tasks. json

31

Setting Up Visual Studio Code

{
"version": "2.0.0",
"tasks": [
{
"label": "build",
"type": "shell",
"group": {
"kind": "build",
"isDefault": true
},
"windows": {
"command": "PCBuild/build.bat",
"args": ["-p", "x64", "-c", "Debug"]
1
"linux": {
"command": "make -j2 -s"
1,
"osx": {
"command": "make -j2 -s"
}
}
]
}

Using the Task Explorer plugin, you'll see a list of your configured
tasks inside the vscode group:

v TASK EXPLORER

Vv Last Tasks
A build (cpython - Workspace)
A tags (cpython - make) PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL
A clean (cpython - make)
v cpython

B3 bash

batch

03 make

BY powershell

@ python

>J vscode

A build

M clean

No problems have been detected in the workspace so far.

>
>
>
>
>
v

32

Setting Up JetBrains CLion

In the next chapter, you’ll learn more about the build process for com-
piling CPython.

Setting Up JetBrains CLion

JetBrains makes an IDE for Python called PyCharm as well as an IDE
for C/C++ development called CLion.

CPython has both C and Python code. You can’t install C/C++ support
into PyCharm, but CLion comes bundled with Python support.

Important

Makefile support is available only in CLion versions 2020.2 and
above.

Important

This step requires that you have both generated a makefile by
running configure and compiled CPython.

Please read the chapter “Compiling CPython” for your operat-
ing system and then return to this chapter.

After compiling CPython for the first time, you’ll have a makefile in
the root of the source directory.

Open CLion and choose |Open or Import| from the welcome screen.

Navigate to the source directory, select the makefile, and press [Open|:

33

Setting Up JetBrains CLion

Open Project

Makefile is a project file.
Would you like to open this project?

Open as File ‘ Cancel Open as Project

CLion will ask whether you want to open the directory or import

the makefile as a new project. Select to import as a

project.

CLion will ask which make target to run before importing. Leave the
default option, clean, and continue:

SEarci EVETywnere pounie o

Gn tn Eila ¥ N
[JOX J Loading Project

Clean project
Make target to run: clean

Import works best on a clean project. When run on an uncleaned project, reload will miss all the
unchanged files.

? Cancel m
>

Next, check that you can build the CPython executable from CLion.
From the top menu, select Build)) Build Project|.

In the status bar, you should see a progress indicator for the project
build:

() Event Log
Building... P v3.9.0b5

34

Setting Up JetBrains CLion

Once this task is complete, you can target the compiled binary as a
run/debug configuration.

Select |Run)) Edit Configurations| to open the Run/Debug Configura-
tions window. Inside this window, select [+) Makefile Application|and
complete the following steps:

1. Set the Name to cpython.

2. Leave the build target as al1.

3. For the executable, select the dropdown and choose [Select Other),
then find the compiled CPython binary in the source directory. It

will be called python OT python.exe.

4. Enter any program arguments you wish to always have, such as -x
dev to enable development mode. These flags are covered later in
“Setting Runtime Configuration With the Command Line.”

5. Set the working directory to the CLion macro $ProjectFileDir$:

Run/Debug Configurations
+ - B S » Name: cpython Allow parallel run Store as project file
Makefile Application
cpython Target: all -l

> J Templates
Executable: python.exe v

Program arguments: -X dev
Working directory: $ProjectFileDir$

Environment variables:

~ Before launch
“\ Build

o

Show this page [Activate tool window

? Cancel P [ok |

Click to add this configuration. You can repeat this step as many
times as you like for any of the CPython make targets. See the section

35

Setting Up JetBrains CLion

“CPython’s Make Targets” in the chapter “Compiling CPython” for a
full reference.

The cpython build configuration will now be available in the top right
of the CLion window:

14N cpython v | p H G Git v v A B Q
g

[

8

®

To test it out, click the arrow icon or select |Run)) Run 'cpython’| from
the top menu. You should now see the REPL at the bottom of the

CLion window:

Run: cpython

> /Users/anthonyshaw/PycharmProjects/cpython-clion-testing/python.exe -X dev
Python 3.9.0b5 (tags/v3.9.@b5:8ad7d506ca, Aug 6 2020, 10:40:10)

[Clang 11.0.3 (clang-1103.0.32.62)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

- g Yl

Process finished with exit code 15

[2: Favorites

Great! Now you can make changes and quickly try them out by click-

ing and [Run|. If you put any breakpoints in the C code, then
make sure you choose instead of [Run|.

36

Setting up Vim

Within the code editor, the shortcuts [Cmd|+[Click| on macOS and

+ on Windows and Linux will bring up in-editor navigation fea-
tures:

T
708
709
710
711

static int do_raise(PyThreadState xtstate, PyObject *exc, PyObject *cause);
static int unpack_iterable(PyThreadState %, PyObject *, int, int, PyObject *x);

it

712 #define _Py_TracingPossible(ceval) ((ceval)->tracing_possible)

713 F D H W Usages of _Py_TracingPossible in All Places (4 usages found) 'y
;ii PyObject ceval.c 847 if (llitrace && !_Py_TracingPossible(ceval) && !PyDTrace_LINE_ENABLED() { \
716 % PyEval_EvalCode(PyObj ¢ ceval.c 1274 if (Py_TracingPossible(ceval) &&

717 { - = tags 8231 _Py_TracingPossible ./Python/ceval.c /A#define _Py_TracingPossible(/;" d file:
718 return PyEval_Eva Press \3F7 again to search in Project Files

719 globals, locals,

720 (PyObject sx)NULL, O,

721 (PyObject sx)NULL, O,

722 (PyObject sx)NULL, 0,

723 NULL, NULL);

724 P

725

726

727 /% Interpreter main loop */

728

Setting up Vim

Vim is a powerful console-based text editor. For fast development,
use Vim with your hands resting on the keyboard home keys. The
shortcuts and commands are within reach.

On most Linux distributions and within the macOS Terminal,
vi is an alias for vim. We’'ll use the vim command in this book,
but if you have the alias, then vi will also work.

Out of the box, Vim has only basic functionality, little more than a text
editor like Notepad. With some configuration and extensions, how-
ever, Vim can become a powerful tool for both Python and C editing.

Vim’s extensions are in various locations, including GitHub. To ease
the configuration and installation of plugins from GitHub, you can
install a plugin manager like Vundle.

To install Vundle, run this command at the terminal:

37

https://github.com/VundleVim/Vundle.vim

Setting up Vim

$ git clone https://github.com/VundleVim/Vundle.vim.git \
~/.vim/bundle/Vundle.vim

Once Vundle is downloaded, you need to configure Vim to load the
Vundle engine.

You'll install two plugins:

1. Fugitive: A status bar for Git with shortcuts for many Git tasks

2. Tagbar: A pane for making it easier to jump to functions, meth-
ods, and classes

To install these plugins, first change the contents of your Vim config-
uration file (normally HOME» .vimrc) to include the following lines:

cpython-book-samples?» 11» .vimrc

syntax on
set nocompatible " be iMproved, required
filetype off " required

set the runtime path to include Vundle and initialize
set rtp+=~/.vim/bundle/Vundle.vim
call vundle#begin()

" let Vundle manage Vundle, required

Plugin 'VundleVim/Vundle.vim'

" The following are examples of different formats supported.
" Keep Plugin commands between vundle#begin/end.
" plugin on GitHub repo

Plugin 'tpope/vim-fugitive'

Plugin 'majutsushi/tagbar’

" All of your Plugins must be added before this line
call vundle#end() " required

filetype plugin indent on required
" Open tagbar automatically in C files, optional

autocmd FileType c call tagbar#autoopen(0)

38

https://github.com/tpope/vim-fugitive
http://vimcasts.org/episodes/fugitive-vim---a-complement-to-command-line-git/
https://github.com/majutsushi/tagbar

Setting up Vim

" Open tagbar automatically in Python files, optional
autocmd FileType python call tagbar#autoopen(0)

" Show status bar, optional

set laststatus=2

" Set status as git status (branch), optional

set statusline=%{FugitiveStatusline()}

To download and install these plugins, run the following command:

$ vim +PluginInstall +qall

You should see output for the download and installation of the plugins
specified in the configuration file.

When editing or exploring the CPython source code, you will want to
jump quickly between methods, functions, and macros. A basic text
search won’t distinguish a call to a function or its definition from the
implementation. But you can use an application called ctags to index
source files across a multitude of languages into a plain text database.

To index CPython’s headers for all the C files and Python files in the
standard library, run the following code:

$./configure

$ make tags

Now open the Python» ceval.c file in Vim:

$ vim Python/ceval.c

39

http://ctags.sourceforge.net/

Setting up Vim

You'll see the Git status at the bottom and the functions, macros, and
variables in the right-hand pane:

ece
#include "setobject.h"
#include "structmember.h"

#include <ctype.h>

#ifdef Py_DEBUG

/* For debugging the interpreter: */

#define LLTRACE 1 /* Low-level trace feature %/
#define CHECKEXC 1 /% Double—-check exception checking s/
#endif

#if !defined(Py_BUILD_CORE)

error "ceval.c must be build with Py_BUILD_CORE define for best per]
formance"

#endif

/% Private API for the LOAD_METHOD opcode. x/
extern int _PyObject_GetMethod(PyObject *, PyObject *, PyObject #x);

type PyObject *(xcallproc)(PyObject %, PyObject *, PyObject *);
/* Forward declarations */
Py_LOCAL_INLINE(PyObject *) call_function(
PyThreadState xtstate, PyObject #¥xpp_stack,
Py_ssize_t oparg, PyObject xkwnames);
static PyObject * do_call_core(
PyThreadState xtstate, PyObject func,
PyObject *callargs, PyObject xkwdict);

#ifdef LLTRACE
static int lltrace;

cpython — vi Python/ceval.c — vi — vi Python/ceval.c — 111x34

" Press <F1>, ? for help
b

b prototypes

l,
—callproc
I
_Py_CheckRecursionLimit
—dxp
—dxpairs
-1ltrace
v

PyEval_AcquireLock(void)
PyEval_AcquireThread(PyThreadState *
PyEval_EvalCode(PyObject %co, PyObje
PyEval_EvalCodeEx(PyObject *_co, Py0O
PyEval_EvalFrame(PyFrameObject *f)
PyEval_EvalFrameEx (PyFrameObject *f,
PyEval_GetBuiltins(void)
PyEval_GetFrame(void)
PyEval_GetFuncDesc(PyObject *func)
PyEval_GetFuncName (PyObject *func)
PyEval_GetGlobals(void)
PyEval_GetLocals(void)
PyEval_InitThreads(void)
PyEval_MergeCompilerFlags(PyCompiler
PyEval_ReleaseLock(void)

| 1 int prtrace(PyObject %, c
[Git(master)]

PyEval ReleaseThread(PyThreadState *
[Name] ceval.c

Next, open a Python file, such as Lib» subprocess.py:

$ vim Lib/subprocess.py

Tagbar will show your imports, classes, methods, and functions:

40

Conclusion

[XoN) cpython — vi Lil pi .py — Vi — vi Lil pi .py — 111x34.
self.returncode = returncode " Press <F1>, ? for help
self.cmd = cmd
self.output = output p imports

self.stderr = stderr
[v CalledProcessError : class

def Pstr__(self): +__init__ : function
if self.returncode and self.returncode < 0: —__str__ : function
try: +stdout : function
return "Command '%s' died with %r." % (stdout : function
self.cmd, signal.Signals(-self.returncode))
except ValueError: v CompletedProcess : class
return "Command '%s' died with unknown signal %d." % (| +__init__ : function
self.cmd, -self.returncode) —__repr__ : function
else: +check_returncode : function
return "Command '%s' returned non-zero exit status %d." %
(v Handle : class
self.cmd, self.returncode) Close : function
+Detach : function
@property —__repr__ : function
def stdout(self): [variables]
wnupAlias for output attribute, to match stderr""" _PopenSelector
return self.output _PopenSelector
__del__
@stdout.setter closed

def stdout(self, value):
There's no obvious reason to set this, but allow it anyway sflv Popen : class
o -__del__ : function

.stdout is a transparent alias for .output -__enter__ : function
self.output = value —__exit__ : function
__init__ : function
+_check_timeout : function
class TimeoutExpired(SubprocessError): v+_close_pipe_fds : function
[Git(master)] [Name] subprocess.py

Within Vim, you can switch between windows with +(W), move
to the right-hand pane with , and use the arrow keys to move up
and down between the tagged functions.

Press to skip to any function implementation. To move back to

the editor pane, press [Ctrl]+[W, then press [H |.

Check out VIM Adventures for a fun way to learn and memorize
the Vim commands.

Conclusion
If you're still undecided about which environment to use, then you

don’t need to make a decision right away. We used multiple environ-
ments while writing this book and working on changes to CPython.

41

https://vim-adventures.com/

Conclusion

Debugging is a critical feature for productivity, so having a reliable de-
bugger that you can use to explore the runtime and understand bugs
will save you a lot of time. If you're used to debugging in Python with
print(), then it’s important to note that this approach doesn’t work in
C. You'll cover debugging in full later in this book.

42

Compiling CPython

Now that you’ve downloaded a development environment and config-
ured it, you can compile the CPython source code into an executable
interpreter.

Unlike Python files, C source code must be recompiled each time it
changes. You’'ll probably want to bookmark this chapter and memo-
rize some of the steps, because you’ll be repeating them a lot.

In the previous chapter, you saw how to set up your development en-
vironment with an option to run the build stage, which recompiles
CPython. Before the build steps will work, you need a C compiler and
some build tools.

The tools used depend on the operating system you're using, so skip
ahead to the section for your operating system.

If you're concerned that any of these steps will interfere with
your existing CPython installations, don’t worry. The CPython
source directory behaves like a virtual environment.

When compiling CPython or modifying the source or the stan-
dard library, this all stays within the sandbox of the source di-
rectory.

If you want to install a custom version, this step is covered in
this chapter.

43

Compiling CPython on macOS

Compiling CPython on macOS

Compiling CPython on macOS requires some additional applications
and libraries. First, you'll need the essential C compiler tool kit. Com-
mand Line Tools is an app that you can update in macOS through
the App Store. You need to perform the initial installation on the ter-
minal.

To open up a terminal in macOS, go to |Applications)) Other)

) Terminal|. You’ll want to save this app to your Dock, so
+|Click| the icon and select |Keep in Dock|.

Within the terminal, install the C compiler and tool kit by running the
following:

$ xcode-select --install

After running this command, you’ll be prompted to download and in-
stall a set of tools, including Git, Make, and the GNU C compiler.

You'll also need a working copy of OpenSSL to use for fetching pack-
ages from the PyPI website. If you plan on using this build to install
additional packages, then SSL validation is required.

The most straightforward way to install OpenSSL on macOS is to use
Homebrew.

If you don’t have Homebrew, then you can download and install
it directly from GitHub with the following command:

$ /usr/bin/ruby -e "$(curl -fsSL \

https://raw.githubusercontent.com/Homebrew/install/master/install)"

44

https://www.openssl.org/
https://brew.sh

Compiling CPython on macOS

Once you have Homebrew installed, you can install the dependencies
for CPython with the brew install command:

$ brew install openssl xz zlib gdbm sqlite

Now that you have the dependencies, you can run the configure script.

The Homebrew command brew --prefix <package> will give the direc-
tory where <package> is installed. You will enable support for SSL by
compiling the location that Homebrew uses.

The flag --with-pydebug enables debug hooks. Add this flag if you in-
tend on debugging for development or testing purposes. Debugging
CPython is covered extensively in the “Debugging” chapter.

The configuration stage needs to be run only once, with the location
of the zlib package specified:

$ CPPFLAGS="-I$(brew --prefix zlib)/include" \
LDFLAGS="-L$ (brew --prefix zlib)/1lib" \
./configure --with-openssl=$(brew --prefix openssl) \

--with-pydebug

Running ./configure will generate a makefile in the root of the reposi-
tory. You can use it to automate the build process.

You can now build the CPython binary by running the following com-
mand:

$ make -j2 -s

See Also

For more information on the options for make, see the section “A
Quick Primer on Make.”

During the build, you may receive some errors. In the build summary,
make will notify you that not all packages were built. For example, the
ossaudiodev, spwd, and _tkinter packages will fail to build with this set of

45

Compiling CPython on Linux

instructions. That’s okay if you aren’t planning on developing against
these packages. If you are, then check out the Python Developer’s
Guide for more information.

The build will take a few minutes and generate a binary called
python.exe. Every time you make changes to the source code, you'll
need to rerun make with the same flags.

The python.exe binary is the debug binary of CPython. Execute
python.exe to see a working REPL:

$./python.exe

Python 3.9 (tags/v3.9:9cf67522, Oct 5 2020, 10:00:00)

[Clang 10.0.1 (clang-1001.0.46.4)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

Important

Yes, that’s right, the macOS build has a . exe file extension. This
extension is not because it’s a Windows binary!

Because macOS has a case-insensitive file system, the devel-
opers didn’t want people to accidentally refer to the directory
Python/ when working with the binary, so they appended .exe to
avoid ambiguity.

If you later run make install or make altinstall, then the file will
be renamed python before it’s installed onto your system.

Compiling CPython on Linux

To compile CPython on Linux, you first need to download and install
make, gcc, configure, and pkgconfig.

Use this command for Fedora Core, RHEL, CentOS, or other YUM-
based systems:

46

https://devguide.python.org/
https://devguide.python.org/

Compiling CPython on Linux

$ sudo yum install yum-utils

Use this command for Debian, Ubuntu, or other APT-based systems:

$ sudo apt install build-essential

Then install some additional required packages.

Use this command for Fedora Core, RHEL, CentOS or other YUM-
based systems:

$ sudo yum-builddep python3

Use this command for Debian, Ubuntu, or other APT-based systems:

$ sudo apt install libssl-dev zliblg-dev libncurses5-dev \
libncursesw5-dev libreadline-dev libsqlite3-dev libgdbm-dev \
libdb5.3-dev libbz2-dev libexpatl-dev liblzma-dev libffi-dev

Now that you have the dependencies, you can run the configure script,
optionally enabling the debug hooks using --with-pydebug:

$./configure --with-pydebug

Next, you can build the CPython binary by running the generated
makefile:

$ make -j2 -s

See Also

For more help on the options for make, see the section “A Quick
Primer on Make.”

Review the output to ensure that there were no issues compiling the
_ss1 module. If there were, then check with your distribution for in-
structions on installing the headers for OpenSSL.

During the build, you may receive some errors. In the build summary,
make will notify you that not all packages were built. That’s okay if you

47

Installing a Custom Version

aren’t planning on developing against those packages. If you are, then
check out the package details for required libraries.

The build will take a few minutes and generate a binary called python.
This is the debug binary of CPython. Execute . /python to see a working
REPL:

$./python

Python 3.9 (tags/v3.9:9c¢f67522, Oct 5 2020, 10:00:00)

[Clang 10.0.1 (clang-1001.0.46.4)] on Linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

Installing a Custom Version

If you're happy with your changes and want to use them inside your
system, then you can install the Python binary from your source repos-
itory as a custom version.

For macOS and Linux, use the altinstall command, which doesn’t
create symbolic links for python3 and installs a standalone version:

$ make altinstall

For Windows, you have to change the build configuration from De-
bug to Release, then copy the packaged binaries to a directory on your
computer that is part of the system path.

A Quick Primer on Make

As a Python developer, you might not have come across make before.
Or perhaps you have, but you haven’t spent much time with it.

For C, C++, and other compiled languages, the list of commands you
need to execute to load, link, and compile your code in the right order
can be very long. When compiling applications from source, you need
to link any external libraries in the system.

48

A Quick Primer on Make

It would be unrealistic to expect the developer to know the locations
of all of these libraries and to copy and paste them into the command
line, so make and configure are commonly used in C/C++ projects to
automate the creation of a build script.

When you executed . /configure, autoconf searched your system for the
libraries that CPython requires and copied their paths into a maketfile.

The generated makefile is similar to a shell script and is broken into
sections called targets.

Take the docclean target as an example. This target deletes some gen-
erated documentation files using the rm command:

docclean:
-rm -rf Doc/build
-rm -rf Doc/tools/sphinx Doc/tools/pygments Doc/tools/docutils

To execute this target, run make docclean. docclean is a simple target as
it runs only two commands.

This is the convention for executing a make target:
$ make [options] [target]

If you call make without specifying a target, then make will run the de-
fault target, which is the first target specified in the makefile. For
CPython, this is the a11 target, which compiles all parts of CPython.

make has many options. Here are some you’ll find useful throughout
this book:

Option Use

-d, --debug [=FLAGS] Print various types of debugging information
-e, ——environment-overrides Environment variables override makefiles

-i, —-ignore-errors Ignore errors from commands

-j [NI, --jobs[=N] Allow N jobs at once or infinite jobs otherwise
-k, --keep-going Keep going when some targets can’t be made
-1 [N], --load-average[=N], Start multiple jobs only if 1oad < N

—-max-load[=N]

49

CPython’s Make Targets

Option Use

-n, --dry-run Print commands instead of running them
-s, ——silent Don’t echo commands

-S, --stop Stop when targets can’t be made

In the next section and throughout the book, you’ll run make with these
options:

$ make -j2 -s [target]

The -j2 flag allows make to run two jobs simultaneously. If you have
four or more cores, then you can change this to four or higher and the
compilation will complete faster.

The -s flag stops the makefile from printing every command it runs to
the console. If you want to see what’s happening, then remove the -s
flag.

CPython’s Make Targets

For both Linux and macOS, you'll find yourself needing to clean up
files, build, or refresh the configuration. The sections below contain
tables outlining a number of useful make targets built into CPython’s
makefile.

Build Targets
The following targets are used for building the CPython binary:

Target Purpose

all (default) Build the compiler, libraries, and modules

clinic Run Argument Clinic on all source files

profile-opt Compile the Python binary with profile-guided
optimization

regen-all Regenerate all generated files

sharedmods Build the shared modules

50

CPython’s Make Targets

Test Targets

The following targets are used for testing your compiled binary:

Target Purpose
coverage Compile and run tests with gcov
coverage-lcov Create coverage HTML reports
quicktest Run a faster set of regression tests by excluding the tests
that take a long time
test Run a basic set of regression tests
testall Run the full test suite twice, once without .pyc files and
once with them
testuniversal Run the test suite for both architectures in a universal
build on OS X
Cleaning Targets

The primary cleaning targets are clean, clobber, and distclean. The
clean target is for generally removing compiled and cached libraries
and .pyc files.

If you find that clean doesn’t do the job, then try clobber. The clob-
ber target will remove your makefile, so you'll have to run ./configure
again.

To completely clean out an environment before distribution, run the
distclean target.

The following list includes the three primary targets listed above, as
well as some additional cleaning targets:

Target Purpose

check-clean-src Check that the source is clean when building out of
source

clean Remove .pyc files, compiled libraries, and profiles

cleantest Remove test_python_* directories of previous failed test
jobs

clobber Same as clean but also remove libraries, tags,

configurations, and builds

51

CPython’s Make Targets

Target Purpose

distclean Same as clobber but also remove anything generated
from source, such as makefiles

docclean Remove built documentation in doc/

profile-removal Remove any optimization profiles

pycremoval Remove .pyc files

Installation Targets

There are two flavors of installation targets: the default version, such
as install, and the alt version, such as altinstall. If you want to in-
stall the compiled version onto your computer but don’t want it to
become the default Python 3 installation, then use the alt version of
the commands:

Target Purpose

altbininstall Install the python interpreter with the version affixed,
such as python3.9

altinstall Install shared libraries, binaries, and documentation
with the version suffix

altmaninstall Install the versioned manuals

bininstall Install all the binaries, such as python, idle, and 2to3

commoninstall Install shared libraries and modules

install Install shared libraries, binaries, and documentation
(Wﬂl run commoninstall, bininstall, and maninstall)

libinstall Install shared libraries

maninstall Install the manuals

sharedinstall Load modules dynamically

After you install with make install, the command python3 will link
to your compiled binary. If you use make altinstall, however, only
python$ (VERSION) will be installed, and the existing link for python3 will
remain intact.

Miscellaneous Targets

Below are some additional make targets that you may find useful:

52

Compiling CPython on Windows

Target Purpose

autoconf Regenerate configure and pyconfig.h.in

python-config Generate the python-config SCI‘ipt

recheck Rerun configure with the same options as last time

smelly Check that exported symbols start with py or _py (see
PEP 7)

tags Create a tags file for vi

TAGS Create a tags file for Emacs

Compiling CPython on Windows

There are two ways to compile the CPython binaries and libraries from
Windows:

1. Compile from the command prompt. This still requires the Mi-
crosoft Visual C++ compiler, which comes with Visual Studio.

2. Open PCbuild» pcbuild.sln from Visual Studio and build directly.

In the sections below, you’ll explore both of these options.

Installing the Dependencies

For both the command prompt compile script and the Visual Studio
solution, you need to install several external tools, libraries, and C
headers.

Inside the pcbuild folder is a .bat file that automates this process for
you. Open a command prompt window inside Pcbuild and execute
PCbuild» get_externals.bat:

> get_externals.bat

Using py -3.7 (found 3.7 with py.exe)
Fetching external libraries...
Fetching bzip2-1.0.6...

Fetching sqlite-3.28.0.0...

Fetching xz-5.2.2...

Fetching zlib-1.2.11...

53

https://www.python.org/dev/peps/pep-0007/#naming-conventions

Compiling CPython on Windows

Fetching external binaries...
Fetching openssl-bin-1.1.1d...
Fetching tcltk-8.6.9.0...

Finished.

Now you can compile from either the command prompt or Visual Stu-
dio.

Compiling From the Command Prompt

To compile from the command prompt, you need to select the CPU
architecture you want to compile against. The default is win32, but
chances are that you want a 64-bit (amd64) binary.

If you do any debugging, then the debug build comes with the ability
to attach breakpoints in the source code. To enable the debug build,
you add -c Debug to specify the debug configuration.

By default, build.bat will fetch external dependencies, but because
we’ve already done that step, it will print a message skipping down-
loads:

> build.bat -p x64 -c Debug

This command will produce the Python binary Pcbuild » amdé4 »
python_d.exe. Start that binary directly from the command prompt:

> amd64\python_d.exe

Python 3.9 (tags/v3.9:9c¢f67522, Oct 5 2020, 10:00:00)
[MSC v.1922 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.

>>>
You're now inside the REPL of your compiled CPython binary.
To compile a release binary, use this command:

> build.bat -p x64 -c Release

54

Compiling CPython on Windows

This command will produce the binary pcbuild» amd64» python. exe.

The suffix _d specifies that CPython was built in the debug con-
figuration.

The released binaries on Python.org are compiled in the
profile-guided optimization (PGO) configuration. See the
“Profile-Guided Optimization (PGO)” section at the end of this
chapter for more details on PGO.

Arguments

The following arguments are available in build.bat:

Flag Purpose Expected Value
-p Build platform CPU x64, Win32 (default), ARM, ARM64
architecture

-c Build configuration Release (default), Debug, PGInstrument
Or PGUpdate

-t Build target Build (default), Rebuild, Clean,
CleanAll

Flags

Here are some optional flags you can use for build.bat:

Flag

Purpose

-V

Verbose mode: show informational messages during build
Very verbose mode: show detailed messages during build
Quiet mode: show only warnings and errors during build
Download and install external dependencies (default)
Don’t download or install external dependencies

Build with profile-guided optimization

Regenerate all grammar and tokens (used when you update
the language)

55

Compiling CPython on Windows

For a full list, run build.bat -h.

Compiling From Visual Studio

Inside the pcbuild folder is a Visual Studio solution file, Pcbuild »
pcbuild.sln, for building and exploring CPython source code.

When the solution file is loaded, it will prompt you to retarget the
projects inside the solution to the version of the C/C++ compiler that
you have installed. Visual Studio will also target the release of the
Windows SDK that you have installed.

Be sure to change the Windows SDK version to the newest installed
version and the platform toolset to the latest version. If you missed
this window, then you can right-click the solution file in the Solutions
and Projects window and select |Retarget Solution|,

Navigate to |Build)) Configuration Manager| and ensure the Active Solu-
tion Configuration drop-down list is set to Debug and the Active So-
lution Platform list is set to either x64 for 64-bit CPU architecture or
win32 for 32-bit.

Next, build CPython by pressing Ctrl|+[Shift]+| B | or choosing
) Build Solution|. If you receive any errors about the Windows SDK be-

ing missing, make sure you set the right targeting settings in the Re-
target Solution window. You should also see a Windows Kits folder in
your Start menu with Windows Software Development Kit inside it.

The build stage could take ten minutes or more the first time. Once
the build completes, you may see a few warnings that you can ignore.

To start the debug version of CPython, press , and CPython will
launch the REPL in debug mode:

56

Compiling CPython on Windows

) File Edit View Project Buid Debug Test Analyze Tools Extensions Window Help Search Visual Studio (Ctrl+Q
el I SIS Continue ~ | 34 i m m O # .

Process: (“ o —

PS— I
C:\Users\anthonyshaw\source\repos\cpython\PCbuild\win32\python_d.exe - =] X

(default, Mar 29 2019, 1920 32 bit (Intel)] on win32
pyright”, “"credits" or " or e information.

You can run the release build by changing the build configuration
from Debug to Release on the top menu bar and rerunning

Build Solution|. You now have both debug and release versions of the

CPython binary within PCbuild» amd64.

You can set up Visual Studio to be able to open a REPL with
either the release or debug build by choosing

Python Environments| from the top menu. In the Python Envi-
ronments panel, click [Add Environment| and then target the debug
or release binary. The debug binary will end in _d.exe, such as
python_d.exe OT pythonw_d. exe.

You’'ll most likely want to use the debug binary as it comes with debug-
ging support in Visual Studio and will be useful as you read through
this book.

In the Add Environment window, target the python_d. exe file as the in-

terpreter inside PCbuild» amd64 and the pythonw_d.exe as the windowed
interpreter:

57

Compiling CPython on Windows

Add environment

Virtual environment Project

Conda environment

Existing environment

Environment
Python installation

<Custom>

Prefix path

c

Make this environment available globally

Description Language version
win32 37 -

interpreter path Architecture

L repos\cpython\PCbuild\win32\python_d.exe

64-bit ~
Windowed interpreter (optional) Path environment variable
L

repos\cpython\PCbuild\win32\pythonw_d.exe e.g. PYTHONPATH

How do | manage Python environments?

Cancel

Start a REPL session by clicking

Open Interactive Window}in the Python

Environments window and you’ll see the REPL for the compiled ver-
sion of Python:

win32 Interactive

a

O E 4 ¥ | Environment: win32 -~ Module:
>>> import sys

v & x
main
>>> sys.version_info

sys.version_info(major=3, minor=8, micro=e, releaselevel='alpha’, serial=3)
> |

100% -

Throughout this book, there will be REPL sessions with example com-

mands. I encourage you to use the debug binary to run these REPL
sessions in case you want to put in any breakpoints within the code.

58

Profile-Guided Optimization

To make it easier to navigate the code, in the Solution view, click the
toggle button next to the Home icon to switch to Folder view:

Solution Explorer - Folder View v ox
2
= RE-S¢GTR| -

4 cpython (C:\Users\anthonyshaw\source\repos\cpython)
.azure-pipelines
.github

Doc

Grammar
Include

Lib

mé

Mac

Misc

Modules
Objects

Parser

PC

TV YVYVYVYVVYYY YV Y

Profile-Guided Optimization

The macOS, Linux, and Windows build processes have flags for
profile-guided optimization (PGO). PGO isn’t something cre-
ated by the Python team, but a feature of many compilers, including
those used by CPython.

PGO works by doing an initial compilation, then profiling the applica-
tion by running a series of tests. The profile is then analyzed, and the
compiler makes changes to the binary that improve performance.

For CPython, the profiling stage runs python -m test --pgo, which ex-
ecutes the regression tests specified in Lib » test » libregrtest » pgo.py.
These tests have been specifically selected because they use a com-
monly used C extension module or type.

59

Profile-Guided Optimization

The PGO process is time-consuming, so to keep your compila-
tion time short, I've excluded it from the lists of recommended
steps offered throughout this book.

If you want to distribute a custom-compiled version of CPython
into a production environment, then you should run . /configure
with the --with-pgo flag in Linux and macOS and use the --pgo
flag in build.bat on Windows.

Because the optimizations are specific to the platform and architec-
ture that the profile was executed on, PGO profiles can’t be shared
between operating systems or CPU architectures. The distributions
of CPython on Python.org have already been through PGO, so if you
run a benchmark on a vanilla-compiled binary, then it will be slower
than one downloaded from Python.org.

The Windows, macOS, and Linux profile-guided optimizations
include these checks and improvements:

Function inlining: If a function is regularly called from another
function, then it will be inlined, or copied into the calling func-
tion, to reduce the stack size.

Virtual call speculation and inlining: If a virtual function call
frequently targets a certain function, then PGO can insert a condi-
tionally executed direct call to that function. The direct call can
then be inlined.

Register allocation optimization: Based on profile data re-
sults, the PGO will optimize register allocation.

Basic block optimization: Basic block optimization allows
commonly executed basic blocks that temporally execute within a
given frame to be placed in the same locality, or set of pages. It
minimizes the number of pages used, which minimizes memory
overhead.

60

Conclusion

+ Hot spot optimization: Functions that the program spends the
most execution time on can be optimized for speed.

+ Function layout optimization: After PGO analyzes the call
graph, functions that tend to be along the same execution path
are moved to the same section of the compiled application.

+ Conditional branch optimization: PGO can look at a decision
branch, like an if ... else if or switch statement, and spot the most
commonly used path. For example, if there are ten cases in a switch
statement, and one is used 95 percent of the time, then that case
will be moved to the top so that it will be executed immediately in
the code path.

« Dead spot separation: Code that isn’t called during PGO is
moved to a separate section of the application.

Conclusion

In this chapter, you've seen how to compile CPython source code into
a working interpreter. You'll use this knowledge throughout the book
as you explore and adapt the source code.

You might need to repeat the compilation steps dozens or even hun-
dreds of times when working with CPython. If you can adapt your
development environment to create shortcuts for recompilation, then
it’s better to do that now and save yourself a lot of time.

61

The Python Language and
Grammar

The purpose of a compiler is to convert one language into another.
Think of a compiler like a translator. You would hire a translator to
listen to you speaking in English and then repeat your words in a dif-
ferent language, like Japanese.

To accomplish this, the translator must understand the grammatical
structures of both the source and target languages.

Some compilers will compile into a low-level machine code that can
be executed directly on a system. Other compilers will compile into
an intermediary language to be executed by a virtual machine.

One consideration when choosing a compiler is the system portability
requirements. Java and .NET CLR will compile into an intermediary
language so that the compiled code is portable across multiple system
architectures. C, Go, C++, and Pascal will compile into an executable
binary. This binary is built for the platform on which it was compiled.

Python applications are typically distributed as source code. The role
of the Python interpreter is to convert the Python source code and
execute it in one step. The CPython runtime compiles your code when
it runs for the first time. This step is invisible to the regular user.

Python code isn’t compiled into machine code. It’s compiled into a
low-level intermediary language called bytecode. This bytecode is
stored in .pyc files and cached for execution. If you run the same

62

https://en.wikipedia.org/wiki/Java_bytecode
https://en.wikipedia.org/wiki/Common_Language_Runtime

Why CPython Is Written in C and Not Python

Python application twice without changing the source code, then it
will be faster on the second execution. This is because it loads the
compiled bytecode instead of recompiling each time.

Why CPython Is Written in C and Not
Python

The C in CPython is a reference to the C programming language, indi-
cating that this Python distribution is written in the C language.

This statement is mostly true. The compiler in CPython is written in
pure C. However, many of the standard library modules are written
in pure Python or a combination of C and Python.

So Why Is the CPython Compiler Written in C and Not Python?

The answer is based on how compilers work. There are two types of
compilers:

1. Self-hosted compilers are compilers written in the language
they compile, such as the Go compiler. This is done by a process
known as bootstrapping.

2. Source-to-source compilers are compilers written in another
language that already has a compiler.

If you're writing a new programming language from scratch, then you
need an executable application to compile your compiler! You need a
compiler to execute anything, so when new languages are developed,
they’re often written first in an older, more established language.

There are also tools available that can take a language specification
and create a parser, which you’ll learn about later in this chapter. Pop-
ular compiler-compilers include GNU Bison, Yacc, and ANTLR.

63

https://en.wikipedia.org/wiki/Self-hosting_(compilers)
https://en.wikipedia.org/wiki/Source-to-source_compiler

Why CPython Is Written in C and Not Python

See Also

If you want to learn more about parsers, then check out the Lark
project. Lark is a parser for context-free grammar written in
Python.

An excellent example of compiler bootstrapping is the Go program-
ming language. The first Go compiler was written in C, then once Go
could be compiled, the compiler was rewritten in Go.

CPython, on the other hand, kept its C heritage. Many of the standard
library modules, like the ss1 module or the sockets module, are written
in C to access low-level operating system APIs.

The APIs in the Windows and Linux kernels for creating network sock-
ets, working with the file system, or interacting with the display were
all written in C, so it made sense for Python’s extensibility layer to be
focused on the C language. Later in this book, you’ll cover the Python
standard library and the C modules.

There is a Python compiler written in Python called PyPy. PyPy’s logo
is an Ouroboros to represent the self-hosting nature of the compiler.

Another example of a cross-compiler for Python is Jython. Jython
is written in Java and compiles from Python source code into Java
bytecode. In the same way that CPython makes it easy to import C
libraries and use them from Python, Jython makes it easy to import
and reference Java modules and classes.

The first step to creating a compiler is to define the language. For
example, this is not valid Python:

def my_example() <str> :

{
void* result = ;

}

The compiler needs strict rules for the grammatical structure for the
language before it tries to execute it.

64

https://github.com/lark-parser/lark
https://realpython.com/python-sockets/
https://realpython.com/python-sockets/
https://realpython.com/working-with-files-in-python/
https://realpython.com/python-gui-with-wxpython/
https://pypy.org/
https://en.wikipedia.org/wiki/Ouroboros
https://www.jython.org/

The Python Language Specification

For the rest of this book, ./python will refer to the compiled ver-
sion of CPython. However, the actual command will depend on
your operating system.

For Windows:

> python.exe

For Linux:

$./python

For macOS:

$./python.exe

The Python Language Specification

Contained within the CPython source code is the definition of the
Python language. This document is the reference specification used
by all the Python interpreters.

The specification is in both a human-readable and a machine-readable
format. Inside the documentation is a detailed explanation of the

Python language outlining what is allowed and how each statement
should behave.

Language Documentation

The Doc » reference directory contains reStructuredText explanations
of the features in the Python language. These files form the official
Python reference guide at docs.python.org/3/reference.

Inside the directory are the files you need to understand the whole
language, structure, and keywords:

65

http://docutils.sourceforge.net/rst.html
https://docs.python.org/3/reference/

The Python Language Specification

Ej cpython/Doc/reference

——compound_stmts.rst Compound statements like 1 f, while, for, and function definitions
F——datamodel.rst Objects, values, and types
——executionmodel.rst The structure of Python programs
expressions.rst The elements of Python expressions
grammar.rst Python’s core grammar (referencing Grammar/Grammar)
——1import.rst The import system
——index.rst Index for the language reference
——introduction.rst Introduction to the reference documentation
——/lexical_analysis.rst Lexical structure like lines, indentation, tokens, and keywords
simple_stmts.rst Simple statements like assert, import, return, and yield

toplevel _components.rst Description of the ways to execute Python, like scripts and modules

An Example

Inside Doc » reference » compound_stmts. rst,youcanseea simple example
defining the with statement.

The with statement has many forms, the simplest being the instantia-
tion of a context manager and a nested block of code:

with x():

You can assign the result to a variable using the as keyword:

with x() as vy:

You can also chain context managers together with a comma:

with x() as vy, z() as jk:

The documentation contains the human-readable specification of the
language. The machine-readable specification is housed in a single
ﬁle, Grammar » python.gram.

66

https://dbader.org/blog/python-context-managers-and-with-statement
https://dbader.org/blog/python-context-managers-and-with-statement

The Python Language Specification

The Grammar File

Python’s grammar file uses a parsing expression grammar (PEG) spec-
ification. In the grammar file you can use the following notation:

« = for repetition

« + for at-least-once repetition

« [1 for optional parts

« | for alternatives

« (O for grouping
As an example, think about how you would define a cup of coffee:

+ It must have a cup.

« It must include at least one shot of espresso and can contain mul-
tiple shots.

« It can have milk, but this is optional.

« It can have water, but this is optional.

« If it contains milk, then the milk can be of various types, like full-
fat, skimmed, or soy.

Defined in PEG, a coffee order could look like this:

coffee: 'cup' ('espresso')+ ['water'] [milk]

milk: 'full-fat' | 'skimmed' | 'soy'

In CPython 3.9, the CPython source code has two grammar files.
One legacy grammar is written in a context-free notation called
Backus-Naur Form (BNF). In CPython 3.10, the BNF grammar
file (Grammar » Grammar) has been removed.

BNF isn’t specific to Python and is often used as the notation
for grammar in many other languages.

67

https://en.m.wikipedia.org/wiki/Backus%E2%80%93Naur_form

The Python Language Specification

In this chapter, you’ll visualize grammar with railroad diagrams.
Here’s a railroad diagram for the coffee statement:

In a railroad diagram, each possible combination must go in a line
from left to right. Optional statements can be bypassed, and some
statements can be formed as loops.

Example: while Statement

There are a few forms of the while statement. The simplest contains
an expression, then the : terminal followed by a block of code:

while finished == True:

do_things()

Alternatively, you can use an assignment expression, which is referred
to in the grammar as a named_expression. This is a new feature as of
Python 3.8:

while letters := read(document, 10):

print(letters)

Optionally, while statements can be followed by an else statement and
block:

while item := next(iterable):
print(item)
else:

print("Iterable is empty")

68

The Python Language Specification

If you search for while_stmt in the grammar file, then you can see the
definition:

while_stmt[stmt_ty]:

| 'while' a=named_expression ':' b=block c=[else_block]

Anything in quotes is a string literal, known as a terminal. Terminals
are how keywords are recognized.

There are references to two other definitions in these two lines:

1. block refers to a block of code with one or multiple statements.

2. named_expression refers to a simple expression or assignment ex-
pression.

Visualized in a railroad diagram, the while statement looks like this:

H—(whileH named_expression|—®—| block I—L(else

As a more complex example, the try statement is defined in the gram-
mar like this:

try_stmt[stmt_ty]:

| 'try' ':' b=block f=finally_block { _Py_Try(b, NULL, NULL, f, EXTRA) }

| 'try' ':' b=block ex=except_block+ el=[else_block] f=[finally_block]..
except_block[excepthandler_ty]:

| 'except' e=expression t=['as' z=target { z }] ':' b=block {

_Py_ExceptHandler(e, (t) ? ((expr_ty) t)->v.Name.id : NULL, b,

| 'except' ':' b=block { _Py_ExceptHandler(NULL, NULL, b, EXTRA) }

finally_block[asdl_seq*]: 'finally' ':' a=block { a }

There are two uses of the try statement:

1. try with only a finally statement

2. try with one or many except clauses, followed by an optional else,
then an optional finally

69

The Parser Generator

Here are those same options visualized in a railroad diagram:

except)ﬁexpression @ target] °

©
[—L(finally)-®—|blockl \ J H

finally)(C {block}

The try statement is a good example of a more complex structure.

If you want to understand the Python language in detail, then read
through the grammar defined in Grammar » python.gram.

The Parser Generator

The grammar file itself is never used by the Python compiler. Instead,
a parser generator reads the file and generates a parser. If you make
changes to the grammar file, then you must regenerate the parser and
recompile CPython.

The CPython parser was rewritten in Python 3.9 from a parser table
automaton (the pgen module) into a contextual grammar parser.

In Python 3.9, the old parser is available at the command line by using
the -x oldparser flag, and in Python 3.10 it’s removed completely. This
book refers to the new parser implemented in 3.9.

Regenerating Grammar
To see pegen, the new PEG generator introduced in CPython 3.9, in

action, you can change part of the Python grammar. Search Grammar »
python.gram for small_stmt to see the definition of small statements:

70

Regenerating Grammar

small_stmt[stmt_ty] (memo):

assignment

e=star_expressions { _Py_Expr(e, EXTRA) }
&'return' return_stmt

&("import' | 'from') import_stmt

&'raise' raise_stmt

'pass' { _Py_Pass(EXTRA) }

&'del' del_stmt

&'yield' yield_stmt

&'assert' assert_stmt

'break' { _Py_Break(EXTRA) }
'continue' { _Py_Continue(EXTRA) }
&'global' global_stmt

&'nonlocal' nonlocal_stmt

In particular, the line 'pass' { _Py_Pass(EXTRA) } is for the pass state-
ment:

Change that line to accept the terminal (keyword) 'pass' or 'proceed’
as keywords by adding a choice, |, and the 'proceed" literal:

| ('pass'|'proceed') { _Py_Pass(EXTRA) }

proceed

G

Next, rebuild the grammar files. CPython comes with scripts to auto-
mate grammar regeneration.

71

Regenerating Grammar

On macOS and Linux, run the make regen-pegen target:
$ make regen-pegen

For Windows, bring up a command prompt from the pcBuild directory
and run build.bat with the --regen flag:

> build.bat --regen

You should see an output showing that the new Parser» pegen» parse.c
file has been regenerated.

With the regenerated parser table, when you recompile CPython, it
will use the new syntax. Use the same compilation steps you used for
your operating system in the last chapter.

If the code compiled successfully, then you can execute your new
CPython binary and start a REPL.

In the REPL, you can now try defining a function. Instead of using the
pass statement, use the proceed keyword alternative that you compiled
into the Python grammar:

$./python

Python 3.9 (tags/v3.9:9cf67522, Oct 5 2020, 10:00:00)

[Clang 10.0.1 (clang-1001.0.46.4)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> def example():

proceed
>>> example()

Congratulations, you've changed the CPython syntax and compiled
your own version of CPython!

Next, you’ll explore tokens and their relationship to grammar.

72

Regenerating Grammar

Tokens

Alongside the grammar file in the Grammar folder is the Grammar » Tokens
file, which contains each of the unique types found as leaf nodes in a
parse tree. Each token also has a name and a generated unique ID.
The names make it simpler to refer to tokens in the tokenizer.

The Grammar » Tokens file is a new feature in Python 3.8.

For example, the left parenthesis is called LpAR, and semicolons are
called sem1. You'll see these tokens later in the book:

LPAR age
RPAR 730
LSQB i
RSQB Tk
COLON 70
COMMA 7,0
SEMI 70

As with the Grammar file, if you change the Grammar » Tokens file, you need
to rerun pegen.

To see tokens in action, you can use the tokenize module in CPython.

The tokenizer written in Python is a utility module. The actual
Python parser uses a different process for identifying tokens.

Create a simple Python script called test_tokens.py:
cpython-book-samples?» 13 » test_tokens.py

Demo application
def my_function():

proceed

73

Regenerating Grammar

Input the test_tokens.py file to a module built into the standard library
called tokenize. You’ll see the list of tokens by line and character. Use
the -e flag to output the exact token names:

$./python -m tokenize -e test_tokens.py

0,0-0,0: ENCODING 'utf-8'
1,0-1,14: COMMENT '# Demo application'
1,14-1,15: NL "\n'

2,0-2,3: NAME 'def'
2,4-2,15: NAME 'my_function'
2,15-2,16: LPAR NG
2,16-2,17: RPAR DN
2,17-2,18: COLON gt
2,18-2,19: NEWLINE "\n'

B0=8,83 INDENT ! !
3,3-3,7: NAME 'proceed’
3,7-3,8: NEWLINE "\n'

4,0-4,0: DEDENT og

4,0-4,0: ENDMARKER v

In the output, the first column is the range of the line and column
coordinates, the second column is the name of the token, and the final
column is the value of the token.

In the output, the tokenize module has implied some tokens:

« The ENCODING token for utf-8

« A DEDENT to close the function declaration
+ An ENDMARKER to end the file

+ Ablank line at the end

It’s best practice to have a blank line at the end of your Python source
files. If you omit it, then CPython adds one for you.

The tokenize module is written in pure Python and is located in Lib»

tokenize.py.

74

Conclusion

To see a verbose readout of the C parser, you can run a debug build
of Python with the -d flag. Using the test_tokens.py script you created
earlier, run it with the following:

$./python -d test_tokens.py

> file[0-0]: statements? $
> statements[0-0]: statement+
> _loopl_11[0-0]: statement

> statement[0-0]: compound_stmt

+ statements[0-10]: statement+ succeeded!

+ file[0-11]: statements? $ succeeded!

In the output, you can see that it highlighted proceed as a keyword. In
the next chapter, you’ll see how executing the Python binary gets to
the tokenizer and what happens from there to execute your code.

To clean up your code, revert the change in Grammar » python.gram, re-
generate the grammar again, then clean the build and recompile.

Use the following for macOS or Linux:

$ git checkout -- Grammar/python.gram
$ make regen-pegen

$ make -j2 -s
Or use the following for Windows:

> git checkout -- Grammar/python.gram
> build.bat --regen

> build.bat -t CleanAll

> build.bat -t Build

Conclusion
In this chapter, you've been introduced to the Python grammar defini-

tions and parser generator. In the next chapter, you’ll expand on that
knowledge to build a more complex syntax feature, an “almost-equal”

75

This is a sample from “CPython Internals: Your
Guide to the Python 3 Interpreter”

With this book you’ll cover the critical concepts behind the internals of
CPython and how they work with visual explanations as you go along.

You'll understand the concepts, ideas, and technicalities of CPython in
an approachable and hands-on fashion. At the end of the book you’ll
be able to:

« Write custom extensions for Python, written in the C program-
ming language (the book includes an “Intro to C for Pythonistas”
chapter)

+ Use your deep knowledge of the CPython interpreter to improve
your own Python applications

 Contribute to the CPython project and start your journey towards
becoming a Python Core Developer

If you enjoyed the sample chapters you can purchase a full
version of the book at realpython.com/cpython-internals

https://realpython.com/cpython-internals

